【題目】若時鐘由2點30分走到2點55分,問時針、分針各轉(zhuǎn)過多大的角度?

【答案】解:分針轉(zhuǎn)過的角度:(360°÷60)×(55﹣30)=150°
時針轉(zhuǎn)過的角度:(360°÷60÷12)×(55﹣30)=12.5°,
∴分針,時針各轉(zhuǎn)過150°、12.5°;
【解析】若時針由2點30分走到2點55分,共經(jīng)過25分鐘,時針一小時即60分鐘轉(zhuǎn)30°,一分鐘轉(zhuǎn)動0.5°,分針一小時轉(zhuǎn)360°,一分鐘轉(zhuǎn)6°,據(jù)此作答.
【考點精析】本題主要考查了角的運算的相關知識點,需要掌握角之間可以進行加減運算;一個角可以用其他角的和或差來表示才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點M(﹣2,3)在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC,若三角形ABC的邊長為1,AE=2,則CD的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過點(1,2),則它的圖象也一定經(jīng)過( 。

A.1,﹣2B.(﹣1,2C.(﹣2,1D.(﹣1,﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如圖(1),若分別以△ABC的三邊AC,BC,AB為邊向三角形外側作正方形ACDE,BCFG和ABMN,則稱這三個正方形為△ABC的外展三葉正方形,其中任意兩個正方形為△ABC的外展雙葉正方形.
(1)作△ABC的外展雙葉正方形ACDE和BCFG,記△ABC,△DCF的面積分別為S1和S2 . ①如圖(2),當∠ACB=90°時,求證:S1=S2
②如圖(3),當∠ACB≠90°時,S1與S2是否仍然相等,請說明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三葉正方形,記△DCF,△AEN,△BGM的面積和為S,請利用圖(1)探究:當∠ACB的度數(shù)發(fā)生變化時,S的值是否發(fā)生變化?若不變,求出S的值;若變化,求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】七邊形的內(nèi)角和是___________度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠A90°AB4,AC3MAB上的動點(不與A,B重合),過M點作MNBCAC于點N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN.令AMx

1)用含x的代數(shù)式表示NP的面積S;

2)當x為何值時,⊙O與直線BC相切?

3)在動點M的運動過程中,記NP與梯形BCNM重合的面積為y,試求y關于x的函數(shù)表達式,并求x為何值時,y的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=(x223,當x2時,yx的增大而_____(填增大減小).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB=120°,OC在它的內(nèi)部,且把∠AOB分成1:3的兩個角,那么∠AOC的度數(shù)為( )
A.40°
B.40°或80°
C.30°
D.30°或90°

查看答案和解析>>

同步練習冊答案