【題目】定義:如圖(1),若分別以△ABC的三邊AC,BC,AB為邊向三角形外側(cè)作正方形ACDE,BCFG和ABMN,則稱這三個正方形為△ABC的外展三葉正方形,其中任意兩個正方形為△ABC的外展雙葉正方形.
(1)作△ABC的外展雙葉正方形ACDE和BCFG,記△ABC,△DCF的面積分別為S1和S2 . ①如圖(2),當∠ACB=90°時,求證:S1=S2
②如圖(3),當∠ACB≠90°時,S1與S2是否仍然相等,請說明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三葉正方形,記△DCF,△AEN,△BGM的面積和為S,請利用圖(1)探究:當∠ACB的度數(shù)發(fā)生變化時,S的值是否發(fā)生變化?若不變,求出S的值;若變化,求出S的最大值.

【答案】
(1)證明:如圖1,

∵正方形ACDE和正方形BCFG,

∴AC=DC,BC=FC,∠ACD=∠BCF=90°,

∵∠ACB=90°,∴∠DCF=90°,

∴∠ACB=∠DCF=90°.

在△ABC和△DFC中,

,

∴△ABC≌△DFC(SAS).

∴SABC=SDFC,

∴S1=S2

②S1=S2.理由如下:

解:如圖3,過點A作AP⊥BC于點P,過點D作DQ⊥FC交FC的延長線于點Q.

∴∠APC=∠DQC=90°.

∵四邊形ACDE,BCFG均為正方形,

∴AC=CD,BC=CF,

∵∠ACP+∠ACQ=90°,∠DCQ+∠ACQ=90°.

∴∠ACP=∠DCQ.

在△APC和△DQC中

,

∴△APC≌△DQC(AAS),

∴AP=DQ.

∴BC×AP=DQ×FC,

BC×AP= DQ×FC

∵S1= BC×AP,S2= FC×DQ,

∴S1=S2


(2)由(2)得,S是△ABC面積的三倍,

要使S最大,只需三角形ABC的面積最大,

∴當△ABC是直角三角形,即∠ACB=90°時,S有最大值.

此時,S=3SABC=3× ×3×4=18


【解析】(1)由正方形的性質(zhì)可以得出AC=DC,BC=FC,∠ACB=∠DCF=90°,就可以得出△ABC≌△DFC而得出結(jié)論;(2)如圖3,過點A作AP⊥BC于點P,過點D作DQ⊥FC交FC的延長線于點Q,通過證明△APC≌△DQC就有DQ=AP而得出結(jié)論;(3)如圖 1,根據(jù)(2)可以得出S=3SABC , 要使S最大,就要使SABC最大,當∠AVB=90°時SABC最大,就可以求出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解題:

你知道為什么任何無限循環(huán)小數(shù)都可以寫成分數(shù)形式嗎?下面的解答過程會告訴你原因和方法.

(1)閱讀下列材料:

問題:利用一元一次方程將化成分數(shù).

設(shè)

,可知

.(請你體會將方程兩邊都乘以10起到的作用)

可解得 ,即

填空:將直接寫成分數(shù)形式為_____________

(2)請仿照上述方法把小數(shù)化成分數(shù),要求寫出利用一元一次方程進行解答的過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD是平行四邊形,AE平分∠BAD,CF平分∠BCD,分別交BC、AD于E、F.求證:AF=EC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上有A、B、C三個點,分別表示有理數(shù)24,-10,10動點PA出發(fā),以每秒1個單位的速度向終點C移動,設(shè)移動時間為t秒.

1用含t的代數(shù)式表示P到點A和點C的距離PA= ,PC=

2當點P運動到B點時QA點出發(fā),以每秒3個單位的速度向C點運動,Q點到達C點后,再立即以同樣的速度返回,運動到終點A

①在運動過程中t為何值時PQ重合?

②在點Q開始運動后,P、Q兩點之間的距離能否為2個單位?如果能,請求出此時點P表示的數(shù)如果不能,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OABC的面積為9,點O為坐標原點,點B在函數(shù)y=(k>0,x>0)的圖像上點P(m,n)是函數(shù)圖像上任意一點,過點P分別作x軸y軸的垂線,垂足分別為E,F.并設(shè)矩形OEPF和正方形OABC不重合的部分的面積為S.

(1)求k的值;

(2)當S=時 求p點的坐標;

(3)寫出S關(guān)于m的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若時鐘由2點30分走到2點55分,問時針、分針各轉(zhuǎn)過多大的角度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上有A、B、C、D四個整數(shù)點(即各點均表示整數(shù)),且3AB=BC=2CD.若A、D兩點所表示的數(shù)分別是﹣65,則線段AC的中點所表示的數(shù)是(  )

A. ﹣3 B. ﹣1 C. 3 D. ﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用代數(shù)式表示”x2倍與Y的差的平方,正確的是(

A. (2x-y)2B. 2(x-y)2C. 2x-y2D. (x-2y)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=(a1x2x+a21圖象經(jīng)過原點,則a的取值為( 。

A.a±1B.a1C.a=﹣1D.無法確定

查看答案和解析>>

同步練習(xí)冊答案