【題目】如圖,∠MON=30°,點A1、A2、A3…在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A7B7A8的邊長為(
A.6
B.12
C.32
D.64

【答案】D
【解析】解:∵△A1B1A2是等邊三角形, ∴A1B1=A2B1 , ∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°﹣120°﹣30°=30°,
又∵∠3=60°,
∴∠5=180°﹣60°﹣30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等邊三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3 , B1A2∥B2A3 ,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2 , B3A3=2B2A3 ,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此類推:A7B7=64B1A2=64.
故選D
【考點精析】認(rèn)真審題,首先需要了解等邊三角形的性質(zhì)(等邊三角形的三個角都相等并且每個角都是60°).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7分我市某校在推進(jìn)新課改的過程中,開設(shè)的體育選修課有:A:籃球B:足球,C:排球D:羽毛球,E:乒乓球學(xué)生可根據(jù)自己的愛好選修,學(xué)校李老師對某班全班學(xué)生的選課情況進(jìn)行調(diào)查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖如圖).

1請你求出該班的總?cè)藬?shù),并補全頻數(shù)分布直方圖;

2表示足球所在扇形的圓心角是多少度?

3該班班委4人中,1人選修籃球2人選修足球,1人選修排球李老師要從這4人中人選2人了解他們對體育選修課的看法,請你用列表或畫樹狀圖的方法求選出的2人恰好1人選修籃球,1人選修足球的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙O的切線,切點為DAB經(jīng)過圓心O并與圓相交于點E,連接AD

(1)求證:AD平分∠BAC

(2)若AC=8,tanDAC=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1∥l2 , 直線l與l1、l2分別交于A、B兩點,點M,N分別在l1、l2上,點M,N,P均在l的同側(cè)(點P不在l1、l2上),若∠PAM=α,∠PBN=β.
(1)當(dāng)點P在l1與l2之間時. 求∠APB的大。ㄓ煤、β的代數(shù)式表示);
(2)若∠APM的平分線與∠PBN的平分線交于點P1 , ∠P1AM的平分線與∠P1BN的平分線交于點P2 , …,∠Pn1AM的平分線與∠Pn1BN的平分線交于點Pn , 則∠AP1B= , ∠APnB= . (用含α、β的代數(shù)式表示,其中n為正整數(shù))
(3)當(dāng)點P不在l1與l2之間時. 若∠PAM的平分線與∠PBN的平分線交于點P,∠P1AM的平分線與∠P1BN的平分線交于點P2 , …,∠Pn1AM的平分線與∠Pn1BN的平分線交于點Pn , 請直接寫出∠APnB的大。ㄓ煤痢ⅵ碌拇鷶(shù)式表示,其中n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高中自主招生考試只考數(shù)學(xué)和物理,數(shù)學(xué)與物理成績按73計入綜合成績.已知小明數(shù)學(xué)成績?yōu)?/span>95分,綜合成績?yōu)?/span>92分,那么小明的物理成績?yōu)?/span>_____分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】生物興趣小組的學(xué)生,將自己手機的標(biāo)本向本組其他成員各贈送意見,全組共贈送了182件,如果全組有x名同學(xué),則根據(jù)題意列出的方程是()

A. x ( x+1)=182B. 2x(x+1)=182C. x(x-1)=182D. x(x-1)=182×2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ABC=90°,D是直線AB上的點,AD=BC.過點A作AF⊥AB,并截取AF=BD,連接DC,DF,CF.
(1)判斷△CDF的形狀并證明.
(2)若BC=6,AF=2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組: 的解集在數(shù)軸上表示為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二元一次方程2x+y=4的自然數(shù)解有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案