如圖,在△ABC中,∠ABC=90°,以AB的中點(diǎn)O為圓心,OA為半徑的圓交AC于點(diǎn)D,E是BC的中點(diǎn),連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)求證:BC2=2CD•OE;
(3)若cos∠BAD=,BE=,求OE的長(zhǎng).
(1)DE為⊙O的切線,理由見(jiàn)解析
(2)證明見(jiàn)解析
(3)OE=
解析試題分析:(1)連接OD,BD,由直徑所對(duì)的圓周角是直角得到∠ADB為直角,可得出△BCD為直角三角形,E為斜邊BC的中點(diǎn),由直角三角形斜邊上的中線等于斜邊的一半,得到CE=DE,從而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中兩銳角互余,從而可得∠ADO與∠CDE互余,可得出∠ODE為直角,即DE垂直于半徑OD,可得出DE為⊙O的切線;
(2)由已知可得OE是△ABC的中位線,從而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,即可證得;
(3)在直角△ABC中,利用勾股定理求得AC的長(zhǎng),根據(jù)三角形中位線定理OE的長(zhǎng)即可求得.
試題解析:(1)DE為⊙O的切線,理由如下:
連接OD,BD,
∵AB為⊙O的直徑,
∴∠ADB=90°,
在Rt△BDC中,E為斜邊BC的中點(diǎn),
∴CE=DE=BE=BC,
∴∠C=∠CDE,
∵OA=OD,
∴∠A=∠ADO,
∵∠ABC=90°,
∴∠C+∠A=90°,
∴∠ADO+∠CDE=90°,
∴∠ODE=90°,
∴DE⊥OD,又OD為圓的半徑,
∴DE為⊙O的切線;
(2)∵E是BC的中點(diǎn),O點(diǎn)是AB的中點(diǎn),
∴OE是△ABC的中位線,
∴AC=2OE,
∵∠C=∠C,∠ABC=∠BDC,
∴△ABC∽△BDC,
∴,即BC2=AC•CD.
∴BC2=2CD•OE;
(3)解:∵cos∠BAD=,
∴sin∠BAC=,
又∵BE=,E是BC的中點(diǎn),即BC=,
∴AC=.
又∵AC=2OE,
∴OE=AC=.
考點(diǎn):1、切線的判定;2、相似三角形的判定與性質(zhì);3、三角函數(shù)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,要使△ABC與△DBA相似,則只需添加一個(gè)適當(dāng)?shù)臈l件是_________(填一個(gè)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在△PAB中,點(diǎn)C、D在邊AB上,PC=PD=CD,∠APB=120°.
(1)試說(shuō)明△APC與△PBD相似.
(2)若CD=1,AC=x,BD=y(tǒng),請(qǐng)你求出y與x之間的函數(shù)關(guān)系式.
(3)小明猜想:若PC=PD=1,∠CPD=α,∠APB=β,只要α與β之間滿(mǎn)足某種關(guān)系式,問(wèn)題(2)中的函數(shù)關(guān)系式仍然成立.你同意小明的觀點(diǎn)嗎?如果你同意,請(qǐng)求出α與β所滿(mǎn)足的關(guān)系式;若不同意,請(qǐng)說(shuō)明理曲.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,⊙O的直徑AC與弦BD相交于點(diǎn)F,點(diǎn)E是DB延長(zhǎng)線上一點(diǎn),∠EAB=∠ADB.
(1)求證:EA是⊙O的切線;
(2)已知點(diǎn)B是EF的中點(diǎn),求證:以A、B、C為頂點(diǎn)的三角形與△AEF相似;
(3)已知AF=4,CF=2,在(2)的條件下,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在△ABC中,D是BC邊上的點(diǎn)(不與點(diǎn)B、C重合),連結(jié)AD.
問(wèn)題引入:
(1)如圖①,當(dāng)點(diǎn)D是BC邊上的中點(diǎn)時(shí),S△ABD:S△ABC= ;當(dāng)點(diǎn)D是BC邊上任意一點(diǎn)時(shí),S△ABD:S△ABC= (用圖中已有線段表示).
探索研究:
(2)如圖②,在△ABC中,O點(diǎn)是線段AD上一點(diǎn)(不與點(diǎn)A、D重合),連結(jié)BO、CO,試猜想S△BOC與S△ABC之比應(yīng)該等于圖中哪兩條線段之比,并說(shuō)明理由.
拓展應(yīng)用:
(3)如圖③,O是線段AD上一點(diǎn)(不與點(diǎn)A、D重合),連結(jié)BO并延長(zhǎng)交AC于點(diǎn)F,連結(jié)CO并延長(zhǎng)交AB于點(diǎn)E,試猜想的值,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
好學(xué)的小宸利用電腦作了如下的探索:
(1)如圖①,將邊長(zhǎng)為2的等邊三角形復(fù)制若干個(gè)后向右平移,使一條邊在同一直線上.則△A2C1B1的面積為 ;
(2)求△A4C3B3的面積;
(3)在保持圖①中各三角形的邊OB1=B1B2=B2B3=B3B4=2不變的前提下,小宸又作了如下探究:將頂點(diǎn)A1、A2、A3、A4向上平移至同一高度(如圖②),若OA4=OB4,試判斷以O(shè)A2、OA3和OA4為三邊能否構(gòu)成三角形?若能,請(qǐng)判斷這個(gè)三角形的形狀;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在□ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,垂足為D.
(1)若AD=9,BC=16,求BD的長(zhǎng);
(2)求證:AB2•BC=CD2•AD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com