如圖,正方形ABCD的邊AB在x軸的正半軸上,C(2,1),D(1,1).反比例函數(shù)y=數(shù)學公式的圖象與邊BC交于點E,與邊CD交于點F.已知BE:CE=3:1,則DF:FC等于


  1. A.
    4:1
  2. B.
    3:1
  3. C.
    2:1
  4. D.
    1:1
D
分析:根據(jù)正方形的性質得到B(2,0),BC=DC=1,而BE:CE=3:1,則BE=,可得到E點坐標為(2,),從而確定k=,再根據(jù)F點的縱坐標為1,且F點在反比例函數(shù)y=,得到F點的橫坐標為,于是可求出DF=,CF=1-=,它們的比也隨即可得到.
解答:∵四邊形ABCD為正方形,且C(2,1),D(1,1),
∴A(1,0),B(2,0),BC=DC=1,
∵BE:CE=3:1,
∴BE=,
∴E點坐標為(2,),
把E點坐標為(2,)代入反比例函數(shù)y=,
∴k=2×=,
又∵F點的縱坐標為1,且F點在反比例函數(shù)y=,
∴F點的橫坐標為,
∴DF=,CF=1-=,
∴DF:CF=1:1.
故選D.
點評:本題考查了反比例函數(shù)y=的圖象上點的坐標特點:它們的橫縱坐標的積等于k.也考查了正方形的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案