已知矩形的面積為1,兩鄰邊長分別為x,y,則y關于x的函數(shù)圖象大致為( )
A.
B.
C.
D.
【答案】分析:根據(jù)矩形的面積公式得xy=1,再根據(jù)反比例函數(shù)y=的圖象是雙曲線,當k>0時,它的兩個分支分別位于第一、三象限;當k<0時,它的兩個分支分別位于第二、四象限.
解答:解:∵矩形的長、寬分別為x、y,面積為1,
根據(jù)矩形的面積公式得:xy=1.
即y=
∵x和y都大于零,
根據(jù)反比例函數(shù)的性質得:
y=的圖象是D.
故選:D.
點評:此題主要考查了反比例函數(shù)的應用以及反比例函數(shù)的圖象,現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數(shù)關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知矩形的面積為8,那么它的長y與寬x之間的關系用圖象大致可表示為( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題情境
已知矩形的面積為a(a為常數(shù),a>0),當該矩形的長為多少時,它的周長最小?最小值是多少?
數(shù)學模型
設該矩形的長為x,周長為y,則y與x的函數(shù)關系式為y=2(x+
a
x
)(x>0)

探索研究
(1)我們可以借鑒學習函數(shù)的經(jīng)驗,先探索函數(shù)y=x+
1
x
(x>0)
的圖象性質.
1填寫下表,畫出函數(shù)的圖象:
x
1
4
1
3
1
2
1 2 3 4
y
②觀察圖象,寫出該函數(shù)兩條不同類型的性質;
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,除了通過觀察圖象,還可以通過配方得到.同樣通過配方也可以求函數(shù)y=x+
1
x
(x>0)的最小值.y=x+
1
x
=(
x
)2+(
1
x
)2
=(
x
)2+(
1
x
)2-2
x
1
x
+2
x
1
x

=(
x
-
1
x
)2+2
≥2
x
-
1
x
=0,即x=1時,函數(shù)y=x+
1
x
(x>0)的最小值為2.
解決問題
(2)解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知矩形的面積為10,則它的長與寬之間的函數(shù)關系用圖象大致可表示為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•營口一模)[提出問題]:已知矩形的面積為1,當該矩形的長為多少時,它的周長最?最小值是多少?
[建立數(shù)學模型]:設該矩形的長為x,周長為y,則y與x的函數(shù)關系式為y=x+
1
x
(x>0).
[探索研究]:我們可以借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)y=x+(x>0)的圖象和性質.
①填寫下表,畫出函數(shù)的圖象;
x
1
4
1
3
1
2
1 2 3 4
y
②觀察圖象,寫出當自變量x取何值時,函數(shù)y=x+
1
x
(x>0)有最小值;
③我們在課堂上求二次函數(shù)最大(小)值時,除了通過觀察圖象,還可以通過配方得到.請你通過配方求函數(shù)y=x+
1
x
(x>0)的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知矩形的面積為6,則這個矩形的長為y與寬x的函數(shù)關系的圖象大致是(  )

查看答案和解析>>

同步練習冊答案