【題目】如圖,某人在D處測得山頂C的仰角為37°,向前走100米來到山腳A處,測得山坡AC的坡度為i=1:0.5,求山的高度(不計(jì)測角儀的高度,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).

【答案】240米.

【解析】

試題此題是把實(shí)際問題轉(zhuǎn)化為解直角三角形問題,由題意,已知DA=200,∠CDB=30°,CB:AB=1:0.5,∠CBD=90°,求CB.設(shè)AB=x,則CB=2x,由三角函數(shù)得:,即,求出x,從求出CB.即求出山的高度.

試題解析:已知山坡AC的坡度i=1:0.5,

設(shè)AB=x,則CB=2x,又某人在D處測得山頂C的仰角為30°,即,∠CDB=37°,

,即

解得:x=,

∴CB=2x=米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=6,AC=10,BC邊上的中線AD=4,則ABC的面積為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了這樣一個(gè)問題:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?用現(xiàn)代語言表述為:如圖,AB為⊙O的直徑,弦CDAB于點(diǎn)E,AE = 1寸,CD = 10寸,求直徑AB的長.請你解答這個(gè)問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件中,不能判斷是直角三角形的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形、、按如圖放置,其中點(diǎn)、、軸正半軸上,點(diǎn)、、在直線上,依此類推…,則點(diǎn)的坐標(biāo)是________;點(diǎn)的坐標(biāo)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊥BC,DC⊥BC,EBC上一點(diǎn),使得AE⊥DE;

(1)求證:△ABE∽△ECD;

(2)AB=4,AE=BC=5,求CD的長;

(3)當(dāng)△AED∽△ECD時(shí),請寫出線段AD、AB、CD之間數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任意兩點(diǎn)關(guān)于它們所連線段的中點(diǎn)成中心對稱,在平面直角坐標(biāo)系中,任意兩點(diǎn)P(x1,y1)Q (x2,y2)的對稱中心的坐標(biāo)為,如圖.

1)在平面直角坐標(biāo)系中,若點(diǎn)P1(0,-1)P2(2,3)的對稱中心是點(diǎn)A,則點(diǎn)A的坐標(biāo)為________;

2)另取兩點(diǎn),.有一電子青蛙從點(diǎn)P1處開始依次作關(guān)于點(diǎn)A,B,C的循環(huán)對稱跳動(dòng),即第一次跳到點(diǎn)P1關(guān)于點(diǎn)A的對稱點(diǎn)P2處,接著跳到點(diǎn)P2關(guān)于點(diǎn)B的對稱點(diǎn)P3處,第三次再跳到點(diǎn)P3關(guān)于點(diǎn)C的對稱點(diǎn)P4處,第四次再跳到點(diǎn)P4關(guān)于點(diǎn)A的對稱點(diǎn)P5處,,則點(diǎn)的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面關(guān)于x的方程中:①ax2+x+2=0;3(x﹣9)2﹣(x+1)2=1;x+3=;(a2+a+1)x2﹣a=0;=x﹣1.一元二次方程的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的柑橘,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元;市場調(diào)查發(fā)現(xiàn),若每箱以45元的價(jià)格銷售,平均每天銷售105箱;每箱以50元的價(jià)格銷售,平均每天銷售90箱.假定每天銷售量y(箱)與銷售價(jià)x(元/箱)之間滿足一次函數(shù)關(guān)系式.

1)求平均每天銷售量y(箱)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式;

2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式;

3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案