【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點,其中點A的坐標(biāo)為(﹣3,0),點B的坐標(biāo)為(4,0),連接AC,BC.動點P從點A出發(fā),在線段AC上以每秒1個單位長度的速度向點C作勻速運(yùn)動;同時,動點Q從點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B作勻速運(yùn)動,當(dāng)其中一點到達(dá)終點時,另一點隨之停止運(yùn)動,設(shè)運(yùn)動時間為t秒.連接PQ.
(1)填空:b= ,c= ;
(2)在點P,Q運(yùn)動過程中,△APQ可能是直角三角形嗎?請說明理由;
(3)在x軸下方,該二次函數(shù)的圖象上是否存在點M,使△PQM是以點P為直角頂點的等腰直角三角形?若存在,請求出運(yùn)動時間t;若不存在,請說明理由;
(4)如圖②,點N的坐標(biāo)為(﹣,0),線段PQ的中點為H,連接NH,當(dāng)點Q關(guān)于直線NH的對稱點Q′恰好落在線段BC上時,請直接寫出點Q′的坐標(biāo).
【答案】(1)b= ,c=4;(2)△APQ不可能是直角三角形,理由見解析;(3)t=;(4)Q′( , ).
【解析】試題分析:(1)設(shè)拋物線的解析式為y=a(x+3)(x﹣4).將a=﹣代入可得到拋物線的解析式,從而可確定出b、c的值;
(2)連結(jié)QC.先求得點C的坐標(biāo),則PC=5﹣t,依據(jù)勾股定理可求得AC=5,CQ2=t2+16,接下來,依據(jù)CQ2﹣CP2=AQ2﹣AP2列方程求解即可;
(3)過點P作DE∥x軸,分別過點M、Q作MD⊥DE、QE⊥DE,垂足分別為D、E,MD交x軸與點F,過點P作PG⊥x軸,垂足為點G,首先證明△PAG∽△ACO,依據(jù)相似三角形的性質(zhì)可得到PG=t,AG=t,然后可求得PE、DF的長,然后再證明△MDP≌PEQ,從而得到PD=EQ=t,MD=PE=3+t,然后可求得FM和OF的長,從而可得到點M的坐標(biāo),然后將點M的坐標(biāo)代入拋物線的解析式求解即可;
(4)連結(jié)OP,取OP的中點R,連結(jié)RH,NR,延長NR交線段BC與點Q′.首先依據(jù)三角形的中位線定理得到EH=QO=t,RH∥OQ,NR=AP=t,則RH=NR,接下來,依據(jù)等腰三角形的性質(zhì)和平行線的性質(zhì)證明NH是∠QNQ′的平分線,然后求得直線NR和BC的解析式,最后求得直線NR和BC的交點坐標(biāo)即可.
試題解析:(1)設(shè)拋物線的解析式為y=a(x+3)(x﹣4),
將a=﹣代入得:y=﹣x2+x+4,
∴b=,c=4.
(2)在點P、Q運(yùn)動過程中,△APQ不可能是直角三角形.
理由如下:連結(jié)QC.
∵在點P、Q運(yùn)動過程中,∠PAQ、∠PQA始終為銳角,
∴當(dāng)△APQ是直角三角形時,則∠APQ=90°.
將x=0代入拋物線的解析式得:y=4,
∴C(0,4).
∵AP=OQ=t,
∴PC=5﹣t,
∵在Rt△AOC中,依據(jù)勾股定理得:AC=5,在Rt△COQ中,依據(jù)勾股定理可知:CQ2=t2+16,在Rt△CPQ中依據(jù)勾股定理可知:PQ2=CQ2﹣CP2,在Rt△APQ中,AQ2﹣AP2=PQ2,
∴CQ2﹣CP2=AQ2﹣AP2,即(3+t)2﹣t2=t2+16﹣(5﹣t)2,解得:t=4.5.
∵由題意可知:0≤t≤4,
∴t=4.5不和題意,即△APQ不可能是直角三角形.
(3)如圖所示:
過點P作DE∥x軸,分別過點M、Q作MD⊥DE、QE⊥DE,垂足分別為D、E,MD交x軸與點F,過點P作PG⊥x軸,垂足為點G,則PG∥y軸,∠E=∠D=90°.
∵PG∥y軸,
∴△PAG∽△ACO,
∴,即,
∴PG=t,AG=t,
∴PE=GQ=GO+OQ=AO﹣AG+OQ=3﹣t+t=3+t,DF=GP=t.
∵∠MPQ=90°,∠D=90°,
∴∠DMP+∠DPM=∠EPQ+∠DPM=90°,
∴∠DMP=∠EPQ.
又∵∠D=∠E,PM=PQ,
∴△MDP≌PEQ,
∴PD=EQ=t,MD=PE=3+t,
∴FM=MD﹣DF=3+t﹣t=3﹣t,OF=FG+GO=PD+OA﹣AG=3+t﹣t=3+t,
∴M(﹣3﹣t,﹣3+t).
∵點M在x軸下方的拋物線上,
∴﹣3+t=﹣×(﹣3﹣t)2+×(﹣3﹣t)+4,解得:t=.
∵0≤t≤4,
∴t=.
(4)如圖所示:連結(jié)OP,取OP的中點R,連結(jié)RH,NR,延長NR交線段BC與點Q′.
∵點H為PQ的中點,點R為OP的中點,
∴EH=QO=t,RH∥OQ.
∵A(﹣3,0),N(﹣ ,0),
∴點N為OA的中點.
又∵R為OP的中點,
∴NR=AP=t,
∴RH=NR,
∴∠RNH=∠RHN.
∵RH∥OQ,
∴∠RHN=∠HNO,
∴∠RNH=∠HNO,即NH是∠QNQ′的平分線.
設(shè)直線AC的解析式為y=mx+n,把點A(﹣3,0)、C(0,4)代入得: ,
解得:m= ,n=4,
∴直線AC的表示為y=x+4.
同理可得直線BC的表達(dá)式為y=﹣x+4.
設(shè)直線NR的函數(shù)表達(dá)式為y=x+s,將點N的坐標(biāo)代入得: ×(﹣)+s=0,解得:s=2,
∴直線NR的表述表達(dá)式為y=x+2.
將直線NR和直線BC的表達(dá)式聯(lián)立得: ,解得:x= ,y=,
∴Q′(, ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+1與x軸交于兩點A(﹣1,0),B(1,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)過點B作BD∥CA拋物線交于點D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點M,過M作MN⊥x軸于點N,使以A、M、N為頂點的三角形與△BCD相似?若存在,則求出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雅安地震牽動著全國人民的心,某單位開展了“一方有難,八方支援”賑災(zāi)捐款活動.第一天收到捐款10 000元,第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增長率相同,求捐款增長率;
(2)按照(1)中收到捐款的增長速度,第四天該單位能收到多少捐款?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,身高都為1.6米的小芳、小麗來到溪江公園,準(zhǔn)備用她們所學(xué)的知識測算南塔的高度.如圖,小芳站在A處測得她看塔頂?shù)难鼋?/span> 為45,小麗站在B處(A、B與塔的軸心共線)測得她看塔頂?shù)难鼋?/span> 為30.她們又測出A、B兩點的距離為30米.假設(shè)她們的眼睛離頭頂都為10 cm,則可計算出塔高約為(結(jié)果精確到0.01,參考數(shù)據(jù):≈1.414,≈1.732)( ).
A.36.21米 B.37.71米 C.40.98米 D.42.48米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y= 與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C.
(1)求直線AC的解析式;
(2)如圖2,點E(a,b)是對稱軸右側(cè)拋物線上一點,過點E垂直于y軸的直線與AC交于點D(m,n).點P是x軸上的一點,點Q是該拋物線對稱軸上的一點,當(dāng)a+m最大時,求點E的坐標(biāo),并直接寫出EQ+PQ+PB的最小值;
(3)如圖3,在(2)的條件下,連結(jié)OD,將△AOD沿x軸翻折得到△AOM,再將△AOM沿射線CB的方向以每秒3個單位的速度沿平移,記平移后的△AOM為△A′O'M',同時拋物線以每秒1個單位的速度沿x軸正方向平移,點B的對應(yīng)點為B'.△A'B'M'能否為等腰三角形?若能,請求出所有符合條件的點M'的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AB∥CD,BC⊥CD,AB=2,CD=3,在BC上取點P(P與B、C不重合)連接PA延長至E,使PA=2AE,連接PD并延長至F,使PD=3FD,以PE、PF為邊作平行四邊形,另一個頂點為G,則PG長度的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班10名學(xué)生校服尺寸與對應(yīng)人數(shù)如圖所示,那么這10名學(xué)生校服尺寸的中位數(shù)為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB的中點,AD//EC,∠AED=∠B.
(1)求證:△AED≌△EBC;
(2)當(dāng)AB=6時,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)交軸于點、,交軸于點,在軸上有一點,連接.
(1)求二次函數(shù)的表達(dá)式;
(2)若點為拋物線在軸負(fù)半軸上方的一個動點,求面積的最大值;
(3)拋物線對稱軸上是否存在點,使為等腰三角形,若存在,請直接寫出所有點的坐標(biāo),若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com