【題目】某班10名學生校服尺寸與對應人數(shù)如圖所示,那么這10名學生校服尺寸的中位數(shù)為_____cm

【答案】170

【解析】

根據圖示,可得:某班10名學生校服尺寸分別是160cm、165cm、165cm、165cm170cm、170cm175cm、175cm、180cm180cm,據此判斷出這10名學生校服尺寸的中位數(shù)為多少即可.

∵某班10名學生校服尺寸分別是160cm、165cm、165cm、165cm、170cm、170cm、175cm、175cm、180cm180cm,

∴這10名學生校服尺寸的中位數(shù)為:

(170+170)÷2

340÷2

170(cm)

答:這10名學生校服尺寸的中位數(shù)為170cm

故答案為:170

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點A-4,-2)和Ba4),直線ABy輸于點C,連接QAOB.

1)求反比例函數(shù)的解析式和點B的坐標:

2)根據圖象回答,當x的取值在什么范圍內時,一次函數(shù)的值大于反比例函數(shù)的值;

3)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形OABC是菱形,CDx軸,垂足為D,函數(shù) 的圖象經過點C,且與AB交于點E.若OD2,則△OAE的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標軸交于A,B,C三點,其中點A的坐標為(﹣3,0),點B的坐標為(4,0),連接AC,BC.動點P從點A出發(fā),在線段AC上以每秒1個單位長度的速度向點C作勻速運動;同時,動點Q從點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B作勻速運動,當其中一點到達終點時,另一點隨之停止運動,設運動時間為t秒.連接PQ.

(1)填空:b=   ,c=   ;

(2)在點P,Q運動過程中,APQ可能是直角三角形嗎?請說明理由;

(3)在x軸下方,該二次函數(shù)的圖象上是否存在點M,使PQM是以點P為直角頂點的等腰直角三角形?若存在,請求出運動時間t;若不存在,請說明理由;

(4)如圖,點N的坐標為(﹣,0),線段PQ的中點為H,連接NH,當點Q關于直線NH的對稱點Q′恰好落在線段BC上時,請直接寫出點Q′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,為反比例函數(shù)圖象上的兩點,動點軸正半軸上運動,當線段與線段之差達到最大時,點的坐標是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,第一象限內的點P在直線yx上,過點P的直線交x軸正半軸于點A,交直線y3x于點B,點B在第一象限內.

(1)如圖1,當∠OAB90°時,求的值;

(2)當點A的坐標為(6,0),且BP2AP時,將過點A的拋物線y=﹣x2+mx上下方平移,使它過點B,求平移的方向和距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為參加1123日舉行的丹東市我愛詩詞中小學生詩詞大賽決賽,某校每班選25名同學參加預選賽,成績分別為AB、C、D四個等級,其中相應等級的得分依次記為10分、9分、8分、7分,學校將八年級的一班和二班的成績整理并繪制成如下統(tǒng)計圖:

根據以上提供的信息解答下列問題

1)請補全一班競賽成績統(tǒng)計圖;

2)請直接寫出a、b、cd的值;

班級

 平均數(shù)(分)

 中位數(shù)(分)

 眾數(shù)(分)

 一班

 a   

 b   

 9

 二班

 8.76

 c   

 d   

3)請從平均數(shù)和中位數(shù)兩個方面對這兩個班級的成績進行分析.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,ABAC,以AB為直徑的圓OBC于點D,過點CCFAB,與O的切線BE交于點E,連接DE

1)求證:BDCD;

2)求證:△CAB∽△CDE

3)設△ABC的面積為S1,△CDE的面積為S2,直徑AB的長為x,若∠ABC30°,S1、S2 滿足S1+S2,試求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解初中學生每天在校體育活動的時間(單位:h),隨機調査了該校的部分初中學生.根據調查結果,繪制出如下的統(tǒng)計圖①和圖②.請根據相關信息,解答下列問題:

(Ⅰ)本次接受調查的初中學生人數(shù)為___________,圖①中m的值為_____________;

(Ⅱ)求統(tǒng)計的這組每天在校體育活動時間數(shù)據的平均數(shù)、眾數(shù)和中位數(shù);

(Ⅲ)根據統(tǒng)計的這組每天在校體育活動時間的樣本數(shù)據,若該校共有800名初中學生,估計該校每天在校體育活動時間大于1h的學生人數(shù).

查看答案和解析>>

同步練習冊答案