【題目】如圖,在3×3的正方形網(wǎng)格中標出了∠1和∠2.則∠1+∠2= .
【答案】45°.
【解析】試題分析:根據(jù)圖形,先將角進行轉化,再根據(jù)勾股定理的逆定理,求得∠ACB=90°,由等腰三角形的性質,推得∠1+∠2=45°.
解:連接AC,BC.
根據(jù)勾股定理,AC=BC=,AB=.
∵()2+()2=()2,
∴∠ACB=90°,∠CAB=45°.
∵AD∥CF,AD=CF,
∴四邊形ADFC是平行四邊形,
∴AC∥DF,
∴∠2=∠DAC(兩直線平行,同位角相等),
在Rt△ABD中,
∠1+∠DAB=90°(直角三角形中的兩個銳角互余);
又∵∠DAB=∠DAC+∠CAB,
∴∠1+∠CAB+∠DAC=90°,
∴∠1+∠DAC=45°,
∴∠1+∠2=∠1+∠DAC=45°.
故答案為:45°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰三角形ABC中,∠ABC=90°,D為AC邊上中點,過D點作DE⊥DF,交AB于E,交BC于F,若S四邊形BFDE=9,則AB的長為:
A. 3 B. 6 C. 9 D. 18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC中,點D是BC的中點,BE∥AC,過點D的直線EF交BE于點E,交AC于點F.
(1)求證:BE=CF
(2)如圖2,過點D作DG⊥DF交AB于點G,連結GF,請你判斷BG+CF與GF的大小關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)對徐州市相關的市場物價調研,預計進入夏季后的某一段時間,某批發(fā)市場內(nèi)的甲種蔬菜的銷售利潤y1(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖①所示,乙種蔬菜的銷售利潤y2(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖②所示.
(1)分別求出y1、y2與x之間的函數(shù)關系式;
(2)如果該市場準備進甲、乙兩種蔬菜共10噸,設乙種蔬菜的進貨量為t噸,寫出這兩種蔬菜所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關系式,并求出這兩種蔬菜各進多少噸時 獲得的銷售利潤之和最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=m°,∠ABC和∠ACD的平分線相交于點A1,得∠A1;∠A1BC和∠A1CD的平分線相交于點A2,得∠A2;…;∠A2018BC和∠A2018CD的平分線交于點A2019,則∠A2019=________度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=6,BC=8.
(1)求對角線AC的長;
(2)點E是線段CD上的一點,把△ADE沿著直線AE折疊.點D恰好落在線段AC上,與點F重合,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果拋物線C1的頂點在拋物線C2上,同時,拋物線C2的頂點在拋物線C1上,那么,我們稱拋物線C1與C2關聯(lián).
(1)已知兩條拋物線①:y=x2+2x﹣1,②:y=﹣x2+2x+1,判斷這兩條拋物線是否關聯(lián),并說明理由;
(2)拋物線C1:y=(x+1)2﹣2,動點P的坐標為(t,2),將拋物線C1繞點P(t,2)旋轉180°得到拋物線C2,若拋物線C2與C1關聯(lián),求拋物線C2的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)y=是反比例函數(shù).
(1)求m的值;
(2)指出該函數(shù)圖象所在的象限,在每個象限內(nèi),y隨x的增大如何變化?
(3)判斷點(,2)是否在這個函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知CB是⊙O的弦,CD是⊙O的直徑,點A為CD延長線上一點,BC=AB,∠CAB=30°.
(1)求證:AB是⊙O的切線;(2)若⊙O的半徑為2,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com