如圖,已知矩形ABCD的邊長(zhǎng)AB=2,BC=3,點(diǎn)P是AD邊上的一動(dòng)點(diǎn)(P異于A、D),Q是BC邊上的任意一點(diǎn).連AQ、DQ,過P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.
(1)求證:△APE∽△ADQ;
(2)設(shè)AP的長(zhǎng)為x,試求△PEF的面積S△PEF關(guān)于x的函數(shù)關(guān)系式,并求當(dāng)P在何處時(shí),S△PEF取得最大值,最大值為多少?
(3)當(dāng)Q在何處時(shí),△ADQ的周長(zhǎng)最?(須給出確定Q在何處的過程或方法,不必給出證明)

【答案】分析:(1)根據(jù)PE∥QD得出的同位角相等即可證得兩三角形相似.
(2)由于PE∥DQ,PF∥AQ,因此四邊形PEQF是平行四邊形,根據(jù)平行四邊形的性質(zhì)可知:S△PEF=S平行四邊形PEQF,可先求出△AQD的面積,然后根據(jù)△AEP與△ADQ相似,用相似比的平方即面積比求出△APE的面積,同理可求出△DPF的面積,進(jìn)而可求出平行四邊形PEQF的面積表達(dá)式,也就能得出關(guān)于S,x的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可得出S的最大值即對(duì)于的x的值.
(3)△ADQ中,AD長(zhǎng)為定值,因此要使△ADQ的周長(zhǎng)最小,AQ+QD需最小,可根據(jù)軸對(duì)稱圖形的性質(zhì)和兩點(diǎn)間線段最短為依據(jù)來確定Q點(diǎn)的位置.
解答:(1)證明:∵PE∥DQ
∴△APE∽△ADQ;

(2)解:同(1)可證△APE∽△ADQ與△PDF∽△ADQ,及S△PEF=S平行四邊形PEQF,
根據(jù)相似三角形的面積之比等于相似比得平方,
=,=,
∵S△AQD=AD×AB=×3×2=3,
得S△PEF=S平行四邊形PEQF
=(S△AQD-S△AEP-S△DFP
=×[3-×3-×3]
=(-x2+2x)
=-x2+x
=-(x-2+
∴當(dāng)x=,即P是AD的中點(diǎn)時(shí),S△PEF取得最大值

(3)解:作A關(guān)于直線BC的對(duì)稱點(diǎn)A′,連DA′交BC于Q,則這個(gè)點(diǎn)Q就是使△ADQ周長(zhǎng)最小的點(diǎn),此時(shí)Q是BC的中點(diǎn).

點(diǎn)評(píng):本題主要考查了相似三角形的判定和性質(zhì)、圖形面積的求法、二次函數(shù)的應(yīng)用等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形DEFG內(nèi)接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,則矩形的邊長(zhǎng)DG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中,AB=12cm,BC=6cm,點(diǎn)M沿AB方向從A向B以2cm/秒的速度移動(dòng),點(diǎn)N從D沿DA方向以1c精英家教網(wǎng)m/秒的速度移動(dòng),如果M、N兩點(diǎn)同時(shí)出發(fā),移動(dòng)的時(shí)間為x秒(0≤x≤6).
(1)當(dāng)x為何值時(shí),△MAN為等腰直角三角形?
(2)當(dāng)x為何值時(shí),有△MAN∽△ABC?
(3)愛動(dòng)腦筋的小紅同學(xué)在完成了以上聯(lián)系后,對(duì)該問題作了深入的研究,她認(rèn)為:在M、N的移動(dòng)過程中(N不與D、A重合,M不與A、B重合),以A、M、C、N為頂點(diǎn)的四邊形面積是一個(gè)常數(shù).她的這種想法對(duì)嗎?請(qǐng)說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正三角形ABC的邊長(zhǎng)AB是480毫米.一質(zhì)點(diǎn)D從點(diǎn)B出發(fā),沿BA方向,以每秒鐘10毫米的速度向精英家教網(wǎng)點(diǎn)A運(yùn)動(dòng).
(1)建立合適的直角坐標(biāo)系,用運(yùn)動(dòng)時(shí)間t(秒)表示點(diǎn)D的坐標(biāo);
(2)過點(diǎn)D在三角形ABC的內(nèi)部作一個(gè)矩形DEFG,其中EF在BC邊上,G在AC邊上.在圖中找出點(diǎn)D,使矩形DEFG是正方形(要求所表達(dá)的方式能體現(xiàn)出找點(diǎn)D的過程);
(3)過點(diǎn)D、B、C作平行四邊形,當(dāng)t為何值時(shí),由點(diǎn)C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時(shí)點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧德質(zhì)檢)如圖,已知Rt△ABC,∠B=90°,AB=8,BC=6,把斜邊AC平均分成n段,以每段為對(duì)角線作邊與AB、BC平行的小矩形,則這些小矩形的面積和是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中AB:BC=3:1,點(diǎn)A、B在x軸上,直線y=mx+n(0<m<n<
1
2
),過點(diǎn)A、C交y軸于點(diǎn)E,S△AOE=
9
8
S矩形ABCD,拋物線y=ax2+bx+c過點(diǎn)A、B,且頂點(diǎn)G在直線y=mx+n上,拋物線與y軸交于點(diǎn)F.
(1)點(diǎn)A的坐標(biāo)為
(-3n,0)
(-3n,0)
;B的坐標(biāo)
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

同步練習(xí)冊(cè)答案