【題目】如圖所示,正方形EFGH是由正方形ABCD經(jīng)過位似變換得到的,點O是位似中心,E , F , G , H分別是OA , OB , OC , OD的中點,則正方形EFGH與正方形ABCD的面積比是( 。
A.1:6
B.1:5
C.1:4
D.1:2
【答案】C
【解析】解答:∵正方形EFGH是由正方形ABCD經(jīng)過位似變換得到的,點O是位似中心,∴正方形EFGH∽正方形ABCD ,
∵E , F , G , H分別是OA , OB , OC , OD的中點,
∴EH= AD ,
即位似比為:EH:AD=1:2,
∴正方形EFGH與正方形ABCD的面積比是:1:4.
故選C.
分析:由正方形EFGH是由正方形ABCD經(jīng)過位似變換得到的,點O是位似中心,E , F , G , H分別是OA , OB , OC , OD的中點,易求得位似比等于EH:AD=1:2,又由相似三角形面積的比等于相似比的平方,即可求得正方形EFGH與正方形ABCD的面積比.
【考點精析】掌握位似變換是解答本題的根本,需要知道它們具有相似圖形的性質外還有圖形的位置關系(每組對應點所在的直線都經(jīng)過同一個點—位似中心).
科目:初中數(shù)學 來源: 題型:
【題目】某賓館有客房200間供游客居住,當每間客房的定價為每天180元時,客房恰好全部住滿;如果每間客房每天的定價每增加10元,就會減少4間客房出租.設每間客房每天的定價增加x元,賓館出租的客房為y間.求:
(1)y關于x的函數(shù)關系式;
(2)如果某天賓館客房收入38400元,那么這天每間客房的價格是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c經(jīng)過(1,3),(4,0).
(1)求該拋物線的解析式;
(2)求該拋物線與x軸的交點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條角平分線將△ABC分為三個三角形,則S△ABO︰S△BCO︰S△CAO等于( )
A. 1︰1︰1
B. 1︰2︰3
C. 2︰3︰4
D. 3︰4︰5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).
(1)在圖中作出△ABC關于y軸對稱的△A1B1C1;
(2)寫出點C1的坐標(直接寫答案):C1 ;
(3)△A1B1C1的面積為 ;
(4)在y軸上畫出點P,使PB+PC最。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點,連接DE并延長交CB的延長線于點F,點G在邊BC上,且∠GDF=∠ADF.
(1)求證:△ADE≌△BFE;
(2)連接EG,判斷EG與DF的位置關系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB , 垂足為D , AB=c , ∠a=α , 則CD長為( 。
A.csin2α
B.ccos2α
C.csinαtanα
D.csinαcosα
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀光塔是濰坊市區(qū)的標志性建筑,為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30° . 已知樓房高AB約是45m , 根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CD是m .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC , E、F分別是AB、CD的中點,則下列結論:
①EF∥AD;②S△ABO=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF .
其中正確的個數(shù)是( 。
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com