已知:如圖,E、F是平行四邊形ABCD的對角線AC上的兩點(diǎn),AE=CF.
求證:(1)△ADF≌△CBE;
(2)EB∥DF.

【答案】分析:要證△ADF≌△CBE,因?yàn)锳E=CF,則兩邊同時加上EF,得到AF=CE,又因?yàn)锳BCD是平行四邊形,得出AD=CB,∠DAF=∠BCE,從而根據(jù)SAS推出兩三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB.
解答:證明:(1)∵AE=CF,
∴AE+EF=CF+FE,即AF=CE.
又ABCD是平行四邊形,
∴AD=CB,AD∥BC.
∴∠DAF=∠BCE.
在△ADF與△CBE中,
∴△ADF≌△CBE(SAS).

(2)∵△ADF≌△CBE,
∴∠DFA=∠BEC.
∴DF∥EB.
點(diǎn)評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AB、CD是⊙O的兩條互相垂直的弦,E為垂足,P是CD延長線上的一點(diǎn),PA精英家教網(wǎng)交⊙O于F,GF切⊙O于F且與CP交于G,CH切⊙O于C且與AB的延長線交于H,如果GP2=GD•GC,AD平分∠BAP并交HP于M.
求證:(1)AB為⊙O的直徑;
(2)MH=MP;
(3)
AH
AB
=
AE
AF
(證明過程中最好用數(shù)字表示角).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點(diǎn),AF=CE,DF=BE,DF∥BE.
求證:AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,B、C是線段AD上兩點(diǎn),且AB:BC:CD=2:4:3,M是AD的中點(diǎn),CD=6cm,求線段MC的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖正方形ABCD,E是BC的中點(diǎn),F(xiàn)在AB上,且BF=
14
AB,猜想EF與DE的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,A、C是?DEBF的對角線EF所在直線上的兩點(diǎn),且AE=CF.
求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案