【題目】如圖,已知△PAB的三個(gè)頂點(diǎn)落在格點(diǎn)上.(注:每個(gè)小正方形的邊長(zhǎng)均為1).

1)△PAB的面積為   ;

2)在圖①中,僅用直尺畫出一個(gè)以A為位似中心,與△PAB相似比為12的三角形;

3)在圖①中,畫一個(gè)以AB為邊且面積為6的格點(diǎn)三角形ABC,符合條件的點(diǎn)C   個(gè);

4)在圖②中,只借助無刻度的直尺,在圖中畫出一個(gè)以AB為一邊且面積為12的矩形ABMN

【答案】1;(2)見解析;(3)見解析,3;(4)見解析.

【解析】

1)利用分割法取三角形面積即可.

2)利用三角形中位線定理,分別取PA,AB的中點(diǎn)E,F即可.

3)利用數(shù)形結(jié)合的思想,根據(jù)三角形的面積公式以及平行線間的距離相等解決問題即可.

4)過點(diǎn)BBJC1C2于點(diǎn)M,過點(diǎn)ABNC1C2于點(diǎn)N,可得矩形ABMN

解:(1SPAB4×4×1×4×4×3×1×3

故答案為.

2△PEF如圖中所示.

CD=PD,DEAC,

AE=PE,EAP的中點(diǎn),

同理可證FAB的中點(diǎn),

EF是△ABP的中位線,

∴△AEF△PAB相似比為12;

3)滿足條件的點(diǎn)C如圖所示,有3個(gè).

SABC1=,

同理可求△ABC2的面積=6,

C1C2AB,

∴△△ABC3的面積=6,

故答案為3

4)矩形ABMN如圖中所示.

過點(diǎn)BBJC1C2于點(diǎn)M,過點(diǎn)ABNC1C2于點(diǎn)N,

∵△ABC1的面積=6,

∴矩形ABMN的面積=12.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高中學(xué)校為使高一新生入校后及時(shí)穿上合身的校服,現(xiàn)提前對(duì)某校九年級(jí)(3)班學(xué)生即將所穿校服型號(hào)情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個(gè)不完整的統(tǒng)計(jì)圖(校服型號(hào)以身高作為標(biāo)準(zhǔn),共分為6種型號(hào)).

根據(jù)以上信息,解答下列問題:

(1)該班共有多少名學(xué)生?其中穿175型校服的學(xué)生有多少人?

(2)在條形統(tǒng)計(jì)圖中,請(qǐng)把空缺的部分補(bǔ)充完整;

(3)在扇形統(tǒng)計(jì)圖中,請(qǐng)計(jì)算185型校服所對(duì)應(yīng)扇形圓心角的大小;

(4)求該班學(xué)生所穿校服型號(hào)的眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,A=30°,AB=4,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng).過點(diǎn)PPDAC于點(diǎn)D(點(diǎn)P不與點(diǎn)A、B重合),作∠DPQ=60°,邊PQ交射線DC于點(diǎn)Q.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

(1)用含t的代數(shù)式表示線段DC的長(zhǎng);

(2)當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí),求t的值;

(3)設(shè)△PDQ與△ABC重疊部分圖形的面積為S,求St之間的函數(shù)關(guān)系式;

(4)當(dāng)線段PQ的垂直平分線經(jīng)過△ABC一邊中點(diǎn)時(shí),直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于兩點(diǎn),其中點(diǎn)A坐標(biāo)(-1,0),點(diǎn)C0,5)、D1,8)在拋物線上,M為拋物線的頂點(diǎn).

1)求拋物線的解析式;

2)求△MCB面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,BC=10cm、DC=6cm,點(diǎn)E、F分別為邊AB、BC上的兩個(gè)動(dòng)點(diǎn),E從點(diǎn)A出發(fā)以每秒5cm的速度向B運(yùn)動(dòng),F從點(diǎn)B出發(fā)以每秒3cm的速度向C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.若∠AFD=AED,則t的值為( 。

A. B. 0.5C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,DEBC,垂足為點(diǎn)E,連接ACDE于點(diǎn)F,點(diǎn)GAF的中點(diǎn),∠ACD=2ACB.若DG=3EC=1,則DE的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長(zhǎng)分別是方程x2—7x+12=0的兩根(OA<0B),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒l個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)PQ運(yùn)動(dòng)的時(shí)間為t秒.

(1)A、B兩點(diǎn)的坐標(biāo)。

(2)求當(dāng)t為何值時(shí),△APQ△AOB相似,并直接寫出此時(shí)點(diǎn)Q的坐標(biāo).

(3)當(dāng)t=2時(shí),在坐標(biāo)平面內(nèi),是否存在點(diǎn)M,使以A、PQ、M為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長(zhǎng)為2的正方形ABCD中,點(diǎn)P、Q分別是邊AB、BC上的兩個(gè)動(dòng)點(diǎn)(與點(diǎn)A、B、C不重合),且始終保持BP=BQ,AQ⊥QE,QE交正方形外角平分線CE于點(diǎn)E,AE交CD于點(diǎn)F,連結(jié)PQ.

(1)求證:△APQ≌△QCE;

(2)求∠QAE的度數(shù);

(3)設(shè)BQ=x,當(dāng)x為何值時(shí),QF∥CE,并求出此時(shí)△AQF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,并且滿足.一動(dòng)點(diǎn)從點(diǎn)出發(fā),在線段上以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)移動(dòng);動(dòng)點(diǎn)從點(diǎn)出發(fā)在線段上以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)分別從點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為()

(1)兩點(diǎn)的坐標(biāo);

(2)當(dāng)為何值時(shí),四邊形是平行四邊形?并求出此時(shí)兩點(diǎn)的坐標(biāo).

(3)當(dāng)為何值時(shí),是以為腰的等腰三角形?并求出此時(shí)兩點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案