【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連接AC,過上一點E作EG∥AC交CD的延長線于點G,連接AE交CD于點F,且EG=FG,連接CE.

(1)求證:△ECF∽△GCE;

(2)求證:EG是⊙O的切線;

【答案】(1)證明見解析(2)證明見解析

【解析】(1)∠ACD=∠AEC,EG∥AC,∠G=∠ACD,

所以,∠FCE=∠ECG,可得三角形相似;

(2)連接OE,OE=OA可得∠OAE=∠OEA,GF=GE,∠GEF=∠GFE=∠AFH,

∠AFH+∠EAO=90°,可得∠GEF+∠AEO=90°, OE⊥GE,EG⊙O的切線.

,

∴∠ACD=∠AEC,

∵EG∥AC,

∴∠G=∠ACD,

∴∠G=∠AEC,

∵∠FCE=∠ECG,

∴△ECF∽△GCE.

(2)連接OE,

∵CD⊥AB,∴∠AHF=90°,

∴∠AFH+∠FAH=90°,

∵EG=FG,

∴∠GEF=∠GFE.

∵∠GFE=∠AFH,

∴∠GEF=∠AFH,

∵OE=OA,

∴∠OEA=∠OAE,

∴∠GEO=∠GEF+∠FEO=∠AFH+∠FAH=90°,

OE⊥GE,

∵OE⊙O的半徑,

∴EG⊙O的切線.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】王叔叔在太原市小店區(qū)買了一套商品房,他準備用1萬元將地面鋪上地磚,這套住宅的建筑平面圖(由多個長方形組成)如圖所示(圖中長度單位:),請據(jù)圖解答下列問題.

1)用含的代數(shù)式表示這所住宅的總面積;

2)某公司地磚報價為每平米200元,若,在現(xiàn)有條件下,王叔叔是否會選擇該公司鋪地磚?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各組數(shù)中,以a、bc為邊長的三角形不是直角三角形的是( 。

A. a3b4,c5B. a5,b12c13

C. a1,b2cD. a,b2,c3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,DAC上,EBA的延長線上,BD=CE,BD的延長線交CE于點F。求證:BFCE。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10,,E是點D關(guān)于AB的對稱點,MAB上的一動點,下列結(jié)論:①∠BOE=60°;②∠CED=DOB;DMCE;CM+DM的最小值是10,上述結(jié)論中正確的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B,FC,E在直線lFC之間不能直接測量,點A,Dl異側(cè),測得AB=DE,AC=DF,BF=EC.

1求證:ABC≌△DEF;

2指出圖中所有平行的線段,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點DBC上,DEAB于點E,DFBCAC于點F,BD=CF,BE=CD.若∠AFD=145°,則∠EDF=_____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示是一個幾何體的三視圖.

(1)寫出這個幾何體的名稱;

(2)根據(jù)圖中數(shù)據(jù)計算這個幾何體的表面積;

(3)如果一只螞蟻要從這個幾何體上的點B出發(fā),沿表面爬到AC的中點D,請你求出這條路線的最短路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,ABCD為長方形,其中點A、C坐標分別為(﹣4,2)、(1,﹣4),且ADx軸,交y軸于M點,ABx軸于N.

(1)求B、D兩點坐標和長方形ABCD的面積;

(2)一動點PA出發(fā)(不與A點重合),以個單位/秒的速度沿ABB點運動,在P點運動過程中,連接MP、OP,請直接寫出∠AMP、MPO、PON之間的數(shù)量關(guān)系;

(3)是否存在某一時刻t,使三角形AMP的面積等于長方形面積的?若存在,求t的值并求此時點P的坐標;若不存在請說明理由.

查看答案和解析>>

同步練習冊答案