【題目】在下列各組條件中,不能說明的是(

A.AB=DE,∠B=E,∠C=FB.AB=DE,∠A=D,∠B=E

C.AC=DF,BC=EF,∠A=DD.AB=DEBC=EF,AC=ED

【答案】C

【解析】

根據(jù)各個選項和全等三角形的判定可以解答本題.

AB=DE,B=E,C=F,根據(jù)AAS可以判定ABC≌△DEF,故選項A不符合題意;

AB=DE,A=D,B=E,根據(jù)ASA可以可以判定ABC≌△DEF,故選項B不符合題意;

AC=DF,BC=EF,A=D,根據(jù)SSA不可以判定ABC≌△DEF,故選項C符合題意;

AB=DE,BC=EF,AC=ED,根據(jù)SSS可以可以判定ABC≌△DEF,故選項D不符合題意;

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一節(jié)數(shù)學課后,老師布置了一道課后練習題:

如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于點O,點PD分別在AOBC上,PB=PD,DE⊥AC于點E,求證:△BPO≌△PDE

1)理清思路,完成解答(2)本題證明的思路可用下列框圖表示:

根據(jù)上述思路,請你完整地書寫本題的證明過程.

2)特殊位置,證明結(jié)論

PB平分∠ABO,其余條件不變.求證:AP=CD

3)知識遷移,探索新知

若點P是一個動點,點P運動到OC的中點P′時,滿足題中條件的點D也隨之在直線BC上運動到點D′,請直接寫出CD′AP′的數(shù)量關(guān)系.(不必寫解答過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達小彬家,繼續(xù)向東跑了1.5km到達小紅家,然后又向西跑了4.5km到達學校,最后又向東,跑回到自己家.

(1)以小明家為原點,以向東為正方向,用1個單位長度表示1km,在圖中的數(shù)軸上,分別用點A表示出小彬家,用點B表示出小紅家,用點C表示出學校的位置;

(2)求小彬家與學校之間的距離;

(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠C=90°,斜邊c=5,兩直角邊的長a,b是關(guān)于x的一元二次方程的兩個根,則RtABC中較短的直角邊長為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,A1B1A2B2是水面上相鄰的兩條賽道(看成兩條互相平行的線段).甲是一名游泳運動健將,乙是一名游泳愛好者,甲在賽道A1B1上從A1處出發(fā),到達B1后,以同樣的速度返回A1處,然后重復上述過程;乙在賽道A2B2上以2m/s的速度從B2處出發(fā),到達A2后以相同的速度回到B2處,然后重復上述過程(不考慮每次折返時的減速和轉(zhuǎn)向時間).若甲、乙兩人同時出發(fā),設(shè)離開池邊B1B2的距離為ym),運動時間為ts),甲游動時,ym)與ts)的函數(shù)圖象如圖2所示.

(1)賽道的長度是 m,甲的速度是 m/s;

(2)經(jīng)過多少秒時,甲、乙兩人第二次相遇?

(3)若從甲、乙兩人同時開始出發(fā)到2分鐘為止,甲、乙共相遇了 次.2分鐘時,乙距池邊B1B2的距離為多少米。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知點D、E、F分別為邊BC、AD、CE的中點,若△ABC的面積為16,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格中有格點△ABC與△DEF

1)△ABC與△DEF是否全等?(不說理由.)

2)△ABC與△DEF是否成軸對稱?(不說理由.)

3)若△ABC與△DEF成軸對稱,請畫出它的對稱軸l.并在直線l上畫出點P,使PA+PC最小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)(﹣a32+a6_____

22a5b(﹣ab3_____

3_____

4)(﹣a3(﹣a4_____

5)(x+2)(x3)=_____

6)(2×103×5×104)=_____.(用科學記數(shù)法表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在四邊形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.

(1)連接BC,求BC的長;

(2)求四邊形ABDC的面積.

查看答案和解析>>

同步練習冊答案