【題目】(1)如圖1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且點D在BC邊上滑動(點D不與點B,C重合),連接EC,
①則線段BC,DC,EC之間滿足的等量關(guān)系式為 ;
②求證:BD2+CD2=2AD2;
(2)如圖2,在四邊形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的長.
【答案】(1)①BC=DC+EC,理由見解析;②證明見解析;(2)6.
【解析】
(1)證明△BAD≌△CAE,根據(jù)全等三角形的性質(zhì)解答;
(2)根據(jù)全等三角形的性質(zhì)得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根據(jù)勾股定理計算即可;
(3)作AE⊥AD,使AE=AD,連接CE,DE,證明△BAD≌△CAE,得到BD=CE=9,根據(jù)勾股定理計算即可.
(1)①解:BC=DC+EC,理由如下:
∵∠BAC=∠DAE=90°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
即∠BAD=∠CAE,
在△BAD和△CAE中,,
∴△BAD≌△CAE(SAS),
∴BD=EC,
∴BC=DC+BD=DC+EC,;
故答案為:BC=DC+EC;
②證明:∵Rt△ABC中,AB=AC,
∴∠B=∠ACB=45°,
由(1)得,△BAD≌△CAE,
∴BD=CE,∠ACE=∠B=45°,
∴∠DCE=∠ACB+∠ACE=90°,
∴CE2+CD2=ED2,
在Rt△ADE中,AD2+AE2=ED2,
又AD=AE,
∴BD2+CD2=2AD2;
(2)解:作AE⊥AD,使AE=AD,連接CE,DE,如圖2所示:
∵∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
在△BAD與△CAE中,,
∴△BAD≌△CAE(SAS),
∴BD=CE=9,
∵∠ADC=45°,∠EDA=45°,
∴∠EDC=90°,
∴DE===6,
∵∠DAE=90°,
∴AD=AE=DE=6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教委為了讓廣大青少年學(xué)生走向操場、走進自然、走到陽光下,積極參加體育鍛煉,啟動了“學(xué)生陽光體育運動”,其中有一項是短跑運動,短跑運動可以鍛煉人的靈活性,增強人的爆發(fā)力,因此張明和李亮在課外活動中報名參加了百米訓(xùn)練小組.在近幾次百米訓(xùn)練中,教練對他們兩人的測試成績進行了統(tǒng)計和分析,請根據(jù)圖表中的信息解答以下問題:
成績統(tǒng)計分析表
(1)張明第2次的成績?yōu)?/span>__________秒;
(2)請補充完整上面的成績統(tǒng)計分析表;
(3)現(xiàn)在從張明和李亮中選擇一名成績優(yōu)秀的去參加比賽,若你是他們的教練,應(yīng)該選擇誰? 請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的道路AB上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,假設(shè)他們分別以不同的速度勻速行駛,甲先出發(fā)6分鐘后,乙才出發(fā),乙的速度為千米/分,在整個過程中,甲、乙兩人之間的距離y(千米)與甲出發(fā)的時間x(分)之間的部分函數(shù)圖象如圖.
(1)A、B兩地相距____千米,甲的速度為____千米/分;
(2)求線段EF所表示的y與x之間的函數(shù)表達式;
(3)當(dāng)乙到達終點A時,甲還需多少分鐘到達終點B?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在正方形ABCD中,△AEF的頂點E,F分別在BC,CD邊上,高AG與正方形的邊長相等,
(1)求∠EAF的度數(shù);
(2)在圖①中,連結(jié)BD分別交AE、AF于點M、N,將△ADN繞點A順時針旋轉(zhuǎn)90°至△ABH位置,連結(jié)MH,得到圖②.求證:MN2=MB2+ ND2 ;
(3)在圖②中,若AG=12, BM=,直接寫出MN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,△ACD沿AD折疊,使得點C落在斜邊AB上的點E處.
(1)求證:△BDE∽△BAC;
(2)已知AC=6,BC=8,求線段AD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個長方體的表面展開圖,每個外表面都標注了字母,請根據(jù)要求回答問題:
(1)如果面A在多面體的底部,那么哪一個面會在上面?
(2)如果面F在前面,從左面看是面B,那么哪一個面會在上面?
(3)如果從右面看是面C,面D在后面,那么哪一個面會在上面?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位750名職工積極參加向貧困地區(qū)學(xué)校捐書活動,為了解職工的捐數(shù)量,采用隨機抽樣的方法抽取30名職工作為樣本,對他們的捐書量進行統(tǒng)計,統(tǒng)計結(jié)果共有4本、5本、6本、7本、8本五類,分別用A,B,C,D,E表示,根據(jù)統(tǒng)計數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計圖,由圖中給出的信息解答下列問題:
(1)補全條形統(tǒng)計圖;
(2)這30名職工捐書本數(shù)的眾數(shù)是 本,中位數(shù)是 本;
(3)求這30名職工捐書本數(shù)的平均數(shù)是多少本?并估計該單位750名職工共捐書多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點E位于邊BC上,已知BD是BA與BE的比例中項.
(1)求證:∠CDE=∠ABC;
(2)求證:ADCD=ABCE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“作已知角的角平分線”的尺規(guī)作圖過程.
已知:如圖1,∠MON.
求作:射線OP,使它平分∠MON.
作法:如圖2,
(1)以點O為圓心,任意長為半徑作弧,交OM于點A,交ON于點B;
(2)連結(jié)AB;
(3)分別以點A,B為圓心,大于AB的長為半徑作弧,兩弧相交于點P;
(4)作射線OP.
所以,射線OP即為所求作的射線.
請回答:該尺規(guī)作圖的依據(jù)是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com