【題目】(1)如圖1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且點(diǎn)D在BC邊上滑動(dòng)(點(diǎn)D不與點(diǎn)B,C重合),連接EC,
①則線段BC,DC,EC之間滿足的等量關(guān)系式為 ;
②求證:BD2+CD2=2AD2;
(2)如圖2,在四邊形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的長(zhǎng).
【答案】(1)①BC=DC+EC,理由見解析;②證明見解析;(2)6.
【解析】
(1)證明△BAD≌△CAE,根據(jù)全等三角形的性質(zhì)解答;
(2)根據(jù)全等三角形的性質(zhì)得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根據(jù)勾股定理計(jì)算即可;
(3)作AE⊥AD,使AE=AD,連接CE,DE,證明△BAD≌△CAE,得到BD=CE=9,根據(jù)勾股定理計(jì)算即可.
(1)①解:BC=DC+EC,理由如下:
∵∠BAC=∠DAE=90°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
即∠BAD=∠CAE,
在△BAD和△CAE中,,
∴△BAD≌△CAE(SAS),
∴BD=EC,
∴BC=DC+BD=DC+EC,;
故答案為:BC=DC+EC;
②證明:∵Rt△ABC中,AB=AC,
∴∠B=∠ACB=45°,
由(1)得,△BAD≌△CAE,
∴BD=CE,∠ACE=∠B=45°,
∴∠DCE=∠ACB+∠ACE=90°,
∴CE2+CD2=ED2,
在Rt△ADE中,AD2+AE2=ED2,
又AD=AE,
∴BD2+CD2=2AD2;
(2)解:作AE⊥AD,使AE=AD,連接CE,DE,如圖2所示:
∵∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
在△BAD與△CAE中,,
∴△BAD≌△CAE(SAS),
∴BD=CE=9,
∵∠ADC=45°,∠EDA=45°,
∴∠EDC=90°,
∴DE===6,
∵∠DAE=90°,
∴AD=AE=DE=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教委為了讓廣大青少年學(xué)生走向操場(chǎng)、走進(jìn)自然、走到陽(yáng)光下,積極參加體育鍛煉,啟動(dòng)了“學(xué)生陽(yáng)光體育運(yùn)動(dòng)”,其中有一項(xiàng)是短跑運(yùn)動(dòng),短跑運(yùn)動(dòng)可以鍛煉人的靈活性,增強(qiáng)人的爆發(fā)力,因此張明和李亮在課外活動(dòng)中報(bào)名參加了百米訓(xùn)練小組.在近幾次百米訓(xùn)練中,教練對(duì)他們兩人的測(cè)試成績(jī)進(jìn)行了統(tǒng)計(jì)和分析,請(qǐng)根據(jù)圖表中的信息解答以下問題:
成績(jī)統(tǒng)計(jì)分析表
(1)張明第2次的成績(jī)?yōu)?/span>__________秒;
(2)請(qǐng)補(bǔ)充完整上面的成績(jī)統(tǒng)計(jì)分析表;
(3)現(xiàn)在從張明和李亮中選擇一名成績(jī)優(yōu)秀的去參加比賽,若你是他們的教練,應(yīng)該選擇誰(shuí)? 請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的道路AB上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,假設(shè)他們分別以不同的速度勻速行駛,甲先出發(fā)6分鐘后,乙才出發(fā),乙的速度為千米/分,在整個(gè)過程中,甲、乙兩人之間的距離y(千米)與甲出發(fā)的時(shí)間x(分)之間的部分函數(shù)圖象如圖.
(1)A、B兩地相距____千米,甲的速度為____千米/分;
(2)求線段EF所表示的y與x之間的函數(shù)表達(dá)式;
(3)當(dāng)乙到達(dá)終點(diǎn)A時(shí),甲還需多少分鐘到達(dá)終點(diǎn)B?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在正方形ABCD中,△AEF的頂點(diǎn)E,F分別在BC,CD邊上,高AG與正方形的邊長(zhǎng)相等,
(1)求∠EAF的度數(shù);
(2)在圖①中,連結(jié)BD分別交AE、AF于點(diǎn)M、N,將△ADN繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至△ABH位置,連結(jié)MH,得到圖②.求證:MN2=MB2+ ND2 ;
(3)在圖②中,若AG=12, BM=,直接寫出MN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,△ACD沿AD折疊,使得點(diǎn)C落在斜邊AB上的點(diǎn)E處.
(1)求證:△BDE∽△BAC;
(2)已知AC=6,BC=8,求線段AD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)長(zhǎng)方體的表面展開圖,每個(gè)外表面都標(biāo)注了字母,請(qǐng)根據(jù)要求回答問題:
(1)如果面A在多面體的底部,那么哪一個(gè)面會(huì)在上面?
(2)如果面F在前面,從左面看是面B,那么哪一個(gè)面會(huì)在上面?
(3)如果從右面看是面C,面D在后面,那么哪一個(gè)面會(huì)在上面?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位750名職工積極參加向貧困地區(qū)學(xué)校捐書活動(dòng),為了解職工的捐數(shù)量,采用隨機(jī)抽樣的方法抽取30名職工作為樣本,對(duì)他們的捐書量進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果共有4本、5本、6本、7本、8本五類,分別用A,B,C,D,E表示,根據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計(jì)圖,由圖中給出的信息解答下列問題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)這30名職工捐書本數(shù)的眾數(shù)是 本,中位數(shù)是 本;
(3)求這30名職工捐書本數(shù)的平均數(shù)是多少本?并估計(jì)該單位750名職工共捐書多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點(diǎn)E位于邊BC上,已知BD是BA與BE的比例中項(xiàng).
(1)求證:∠CDE=∠ABC;
(2)求證:ADCD=ABCE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“作已知角的角平分線”的尺規(guī)作圖過程.
已知:如圖1,∠MON.
求作:射線OP,使它平分∠MON.
作法:如圖2,
(1)以點(diǎn)O為圓心,任意長(zhǎng)為半徑作弧,交OM于點(diǎn)A,交ON于點(diǎn)B;
(2)連結(jié)AB;
(3)分別以點(diǎn)A,B為圓心,大于AB的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)P;
(4)作射線OP.
所以,射線OP即為所求作的射線.
請(qǐng)回答:該尺規(guī)作圖的依據(jù)是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com