【題目】如圖①,在正方形ABCD中,△AEF的頂點(diǎn)E,F分別在BC,CD邊上,高AG與正方形的邊長(zhǎng)相等,
(1)求∠EAF的度數(shù);
(2)在圖①中,連結(jié)BD分別交AE、AF于點(diǎn)M、N,將△ADN繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至△ABH位置,連結(jié)MH,得到圖②.求證:MN2=MB2+ ND2 ;
(3)在圖②中,若AG=12, BM=,直接寫出MN的值.
【答案】(1)45°;(2)證明見解析;(3).
【解析】(1)∵正方形ABCD,AG⊥EF,
∴AG=AB,∠ABE=∠AGE=∠BAD=90°,AE=AE,
∴Rt△ABE≌Rt△AGE,∴∠BAE=∠GAE,……………………………………2分
同理Rt△ADF≌Rt△AGF,∴∠GAF=∠DAF,…………………………………4分
∴∠EAF=∠BAD=45°;…………………………………………………………5分
(2)證明:由旋轉(zhuǎn)知,∠BAH=∠DAN,AH=AN,……………………………………7分
∵∠BAD=90°,∠EAF=45°,∴∠BAM+∠DAN=45°,
∴∠HAM=∠BAM+∠BAH=∠BAM+∠DAN =45°,
∴∠HAM=∠NAM,AM=AM,
∴△AHM≌△ANM,…………………………………………………………………8分
∴MN=MH,∵四邊形ABCD是正方形,∴∠ADB=∠ABD=45°
由旋轉(zhuǎn)知,∠ABH=∠ADB=45°,HB=ND,
∴∠HBM=∠ABH+∠ABD=90°,……………………………………………………9分
∴,∴;…………………………………10分
(3).…………………………………………………………………………………12分
以下解法供參考∵,∴;
在(2)中,
設(shè),則.
∴.即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】南崗區(qū)某中學(xué)的王老師統(tǒng)計(jì)了本校九年一班學(xué)生參加體育達(dá)標(biāo)測(cè)試的報(bào)名情況,并把統(tǒng)計(jì)的數(shù)據(jù)繪制成了不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.根據(jù)圖中提供的數(shù)據(jù)回答下列問題:
(1)該學(xué)校九年一班參加體育達(dá)標(biāo)測(cè)試的學(xué)生有多少人?
(2)補(bǔ)全條形統(tǒng)計(jì)圖的空缺部分;
(3)若該年級(jí)有1200名學(xué)生,估計(jì)該年級(jí)參加仰臥起坐達(dá)標(biāo)測(cè)試的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,按如下步驟作圖:①以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫。虎谝渣c(diǎn)C為圓心,CB長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)D;③連結(jié)BD,與AC交于點(diǎn)E,連結(jié)AD,CD.
(1)填空:△ABC≌△ ;AC和BD的位置關(guān)系是
(2)如圖2,當(dāng)AB=BC時(shí),猜想四邊形ABCD是什么四邊形,并證明你的結(jié)論.
(3)在(2)的條件下,若AC=8cm,BD=6cm,則點(diǎn)B到AD的距離是 cm,若將四邊形ABCD通過割補(bǔ),拼成一個(gè)正方形,那么這個(gè)正方形的邊長(zhǎng)為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】25 日某路段雷達(dá)測(cè)速區(qū)監(jiān)測(cè)到一組汽車時(shí)速數(shù)據(jù),經(jīng)整理得到如下頻數(shù)表和頻數(shù)直方圖(每組含后一邊界值,不含前一邊界值).
(1)請(qǐng)你把表中的數(shù)據(jù)填寫完整.
(2)補(bǔ)全頻數(shù)直方圖.
(3)若該路段限速 70(汽車時(shí)速高于 70 千米/小時(shí)即為違章),抽測(cè)到違章車輛有多少輛?統(tǒng)計(jì)表明 25 日全天通過這個(gè)路段的汽車大約有 15000 輛,請(qǐng)估計(jì)這天超速違章的車輛有多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠計(jì)劃每天生產(chǎn)零件個(gè),但實(shí)際每天生產(chǎn)量與計(jì)劃量相比有出入. 下表是某周的生產(chǎn)情況(超產(chǎn)數(shù)量記為正、減產(chǎn)數(shù)量記為負(fù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
(1)由表可知該廠星期四生產(chǎn)零件 個(gè),這周實(shí)際生產(chǎn)零件 個(gè).(用含的代數(shù)式表示)
(2) 產(chǎn)量最高日比最低日多生產(chǎn)零件 個(gè).
(3) 若該周廠計(jì)劃每天生產(chǎn)零件數(shù)是,每個(gè)零件應(yīng)支付工資元,且每天超計(jì)劃數(shù)的零件每個(gè)另獎(jiǎng)元,那這周實(shí)際應(yīng)支付工資多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過O點(diǎn)作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時(shí)三角板旋轉(zhuǎn)的角度為 度;
(2)繼續(xù)將圖2中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關(guān)系,并說明理由;
(3)在上述直角三角板從圖1逆時(shí)針旋轉(zhuǎn)到圖3的位置的過程中,若三角板繞點(diǎn)O按15°每秒的速度旋轉(zhuǎn),當(dāng)直角三角板的直角邊ON所在直線恰好平分∠AOC時(shí),求此時(shí)三角板繞點(diǎn)O的運(yùn)動(dòng)時(shí)間t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且點(diǎn)D在BC邊上滑動(dòng)(點(diǎn)D不與點(diǎn)B,C重合),連接EC,
①則線段BC,DC,EC之間滿足的等量關(guān)系式為 ;
②求證:BD2+CD2=2AD2;
(2)如圖2,在四邊形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新定義:若∠α的度數(shù)是∠β的度數(shù)的n倍,則∠α叫做∠β的n倍角.
(1)若∠M=10°21′,請(qǐng)直接寫出∠M的3倍角的度數(shù);
(2)如圖1,若∠AOB=∠BOC=∠COD,請(qǐng)直接寫出圖中∠AOB的所有2倍角;
(3)如圖2,若∠AOC是∠AOB的3倍角,∠COD是∠AOB的4倍角,且∠BOD=90°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3經(jīng)過點(diǎn)A(2,﹣3),與x軸負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=3OB.
(1)求拋物線的解析式;
(2)點(diǎn)D在y軸上,且∠BDO=∠BAC,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對(duì)稱軸上,是否存在以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com