【題目】如圖,在Rt△ABC中,∠ABC=90°,點(diǎn)B在x軸上,且B(-1,0),A點(diǎn)的橫坐標(biāo)是2,AB=3BC,雙曲線經(jīng)過A點(diǎn),雙曲線y=-經(jīng)過C點(diǎn),則Rt△ABC的面積為_________。
【答案】
【解析】試題解析:過點(diǎn)A作AE⊥x軸于E,過點(diǎn)C作CF⊥x軸于F,
∵A點(diǎn)的橫坐標(biāo)是2,且在雙曲線y═(m>0)上,
∴A(2,2m),
∵∠ABC=90°,
∴∠ABE+∠CBF=∠FCB+∠CBF=90°,
∴∠ABC=∠FCB,
∴△ABE∽△BCF,
∴,
∴CF=1,BF=,
∴C(-1-,1),
∵雙曲線y=-經(jīng)過C點(diǎn),
∴-1-=-m,
∴m=3,
∴A(2,6),C(-3,1),
∴AE=6,CF=1,EF=5,BF=3-1=2,BE=1+2=3,
∴Rt△ABC的面積=S梯形ACFE-S△BCF-S△ABE=(6+1)×5-×2×1-×3×6=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】線段EF是由線段PQ平移得到的,點(diǎn)P(﹣1,4)的對應(yīng)點(diǎn)為E(4,7),則點(diǎn)Q(﹣3,1)的對應(yīng)點(diǎn)F的坐標(biāo)為()
A.(﹣8,﹣2)
B.(﹣2,﹣2)
C.(2,4)
D.(﹣6,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB∥CD,∠A=∠D,試說明 AC∥DE 成立的理由.
(下面是彬彬同學(xué)進(jìn)行的推理,請你將彬彬同學(xué)的推理過程補(bǔ)充完整.)
解:∵AB∥CD (已知)
∴∠A=(兩直線平行,內(nèi)錯(cuò)角相等)
又∵∠A=∠D()
∴∠=∠(等量代換)
∴AC∥DE ()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B兩點(diǎn)是直線AB與x軸的正半軸,y軸的正半軸的交點(diǎn),且OA,OB的長分別是x2﹣14x+48=0的兩個(gè)根(OA>OB),射線BC平分∠ABO交x軸于C點(diǎn),若有一動(dòng)點(diǎn)P以每秒1個(gè)單位的速度從B點(diǎn)開始沿射線BC移動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)求OA,OB的長;
(2)設(shè)△APB和△OPB的面積分別為s1 , s2 , 求s1:s2;
(3)在點(diǎn)P的運(yùn)動(dòng)過程中,△OPB可能是等腰三角形嗎?若可能,直接寫出時(shí)間t;若不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax 2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點(diǎn),頂點(diǎn)為D,點(diǎn)P是拋物線的對稱軸上一點(diǎn),以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),且與直線CD相切,則點(diǎn)P的坐標(biāo)為_______________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形的周長為36m,矩形繞著它的一條邊旋轉(zhuǎn)形成一個(gè)圓柱,設(shè)矩形的一條邊長為xm,圓柱的側(cè)面積為ym2 , 則y與x的函數(shù)關(guān)系式為( )
A.y=﹣2πx2+18πx
B.y=2πx2﹣18πx
C.y=﹣2πx2+36πx
D.y=2πx2﹣36πx
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com