【題目】如圖,在已知的ABC中,按以下步驟作圖:①分別以BC為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MNAB于點D,連接CD.CD=AC,∠A=58°,則∠ABC的度數(shù)為(

A. 29°B. 30°C. 31°D. 32°

【答案】A

【解析】

依次連接CM、MB、BNNC,則四邊形CMBN為菱形,由此得出:∠BND=CND,根據(jù)全等三角形的判定定理,證明BND≌△CND,則BD=CD,故:BDC是等腰三角形.CD=AC且∠A=58°,則∠CDA=58°,根據(jù)外角性質(zhì)得出結(jié)果.

依次連接CM、MB、BNNC,則四邊形CMBN為菱形,

則∠BND=CND.

BNDCND中,,

BND≌△CND,

BD=CD

∴△BDC是等腰三角形,

ABC=DCB

ACD中,CD=AC且∠A=58°,則∠CDA=58°,

由三角形外角性質(zhì):∠CDA=ABC+DCB=2ABC

58°=2ABC,

則∠ABC=29°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點是等邊三角形內(nèi)的一點,,將繞點按順時針旋轉(zhuǎn)得到,則下列結(jié)論不正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)有一塊長為30 m,寬為24 m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“加油向未來”電視節(jié)目中,王清和李北進行無人駕駛汽車運送貨物表演,王清操控的快車和李北操控的慢車分別從兩地同時出發(fā),相向而行.快車到達地后,停留3秒卸貨,然后原路返回地,慢車到達地即停運休息,如圖表示的是兩車之間的距離(米)與行駛時間(秒)的函數(shù)圖象,根據(jù)圖象信息,計算的值分別為( 。

A. 3926B. 39,26.4C. 38,26D. 3826.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】快車從甲地駛向乙地,慢車從乙地駛向甲地,兩車同時出發(fā)并且在同一條公路上勻速行駛,途中快車休息1.5小時,慢車沒有休息.設(shè)慢車行駛的時間為x小時,快車行駛的路程為千米,慢車行駛的路程為千米.如圖中折線OAEC表示x之間的函數(shù)關(guān)系,線段OD表示x之間的函數(shù)關(guān)系.

請解答下列問題:

1)求快車和慢車的速度;

2)求圖中線段EC所表示的x之間的函數(shù)表達式;

3)線段OD與線段EC相交于點F,直接寫出點F的坐標(biāo),并解釋點F的實際意義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小紅在A處用測量儀測得某矩形廣告牌頂端C的仰角為30°,然后前進10m到達B點,此時測得D處的仰角為60°,已知小紅的身高AE=1.5m,廣告牌CD的高度為2m,請你根據(jù)以上數(shù)據(jù)計算GH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是菱形ABCD邊上的動點,它從點A出發(fā)沿ABCD路徑勻速運動到點D,設(shè)的面積為y,P點的運動時間為x,則y關(guān)于x的函數(shù)圖象大致為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的進步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已成為更多人的自主學(xué)習(xí)選擇.某校計劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學(xué)生需求,該校隨機對本校部分學(xué)生進行了你對哪類在線學(xué)習(xí)方式最感興趣的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)圖中信息,解答下列問題:

1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中在線討論對應(yīng)的扇形圓心角的度數(shù);

3)該校共有學(xué)生人,請你估計該校對在線閱讀最感興趣的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點,點,與y軸交于點C,且過點.點PQ是拋物線上的動點.

(1)求拋物線的解析式;

(2)當(dāng)點P在直線OD下方時,求面積的最大值.

(3)直線OQ與線段BC相交于點E,當(dāng)相似時,求點Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案