【題目】如圖,等腰三角形的底邊長為,面積是,腰的垂直平分線分別交,邊于,點.若點邊的中點,點為線段上一動點,則周長的最小值為_________

【答案】11

【解析】

連接AD,交EF于點M,根據(jù)的垂直平分線是可知CM=AM,求周長的最小值及求CM+DM的最小值,當(dāng)A、M、D三點共線時,AM+AD最小,即周長的最小.

解:連接AD,交EF于點M,

∵△ABC為等腰三角形,點邊的中點,底邊長為

AD⊥BC,CD=3

又∵面積是24,

,

AD=8,

又∵的垂直平分線是,

AM=CM,

周長=CM+DM+CD= AM+DM+CD

∴求周長最小值即求AM+DM的最小值,

當(dāng)A、M、D三點共線時,AM+AD最小,即周長的最小,

周長=AD+CD=8+3=11最。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(﹣2,0)、B(4,0)、C(0,﹣8),與直線y=x﹣4交于B,D兩點

(1)求拋物線的解析式并直接寫出D點的坐標(biāo);

(2)點P為直線BD下方拋物線上的一個動點,試求出BDP面積的最大值及此時點P的坐標(biāo);

(3)點Q是線段BD上異于B、D的動點,過點Q作QFx軸于點F,交拋物線于點G,當(dāng)QDG為直角三角形時,直接寫出點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△ADE都是等腰直角三角形,CEBD相交于點M,BDAC于點N.

1)證明:BDCE;

2)證明:BDCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊ABC的邊長為6,在AC,BC邊上各取一點E,F(xiàn),使AE=CF,連接AF、BE相交于點P,當(dāng)點E從點A運動到點C時,點P經(jīng)過點的路徑長為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,點E,F分別在BC,AB上,且DE∥AB,BE=AF.

(1)求證:四邊形ADEF是平行四邊形;

(2)若∠ABC=60°,BD=6,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在正方形ABCD中,點E與點F分別在線段AC、BC上,且四邊形DEFG是正方形.

(1)試探究線段AECG的關(guān)系,并說明理由.

(2)如圖②若將條件中的四邊形ABCD與四邊形DEFG由正方形改為矩形,AB=3,BC=4.

①線段AE、CG在(1)中的關(guān)系仍然成立嗎?若成立,請證明,若不成立,請寫出你認為正確的關(guān)系,并說明理由.

②當(dāng)△CDE為等腰三角形時,求CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點,連接AE、BEBEAE,延長AEBC的延長線于點F

求證:(1)FCAD(2)ABBC+AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,平面內(nèi)互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,如果兩條數(shù)軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數(shù)軸構(gòu)成的是平面斜坐標(biāo)系,兩條數(shù)軸稱為斜坐標(biāo)系的坐標(biāo)軸,公共原點稱為斜坐標(biāo)系的原點,如圖1,經(jīng)過平面內(nèi)一點P作坐標(biāo)軸的平行線PMPN,分別交x軸和y軸于點MN.點M、Nx軸和y軸上所對應(yīng)的數(shù)分別叫做P點的x坐標(biāo)和y坐標(biāo),有序?qū)崝?shù)對(x,y)稱為點P的斜坐標(biāo),記為Px,y).

(1)如圖2,ω=45°,矩形OABC中的一邊OAx軸上,BCy軸交于點DOA=2,OCl

AB、C在此斜坐標(biāo)系內(nèi)的坐標(biāo)分別為A   ,B   ,C   

設(shè)點Px,y)在經(jīng)過O、B兩點的直線上,則yx之間滿足的關(guān)系為   

設(shè)點Qx,y)在經(jīng)過AD兩點的直線上,則yx之間滿足的關(guān)系為   

(2)若ω=120°,O為坐標(biāo)原點.

如圖3,圓My軸相切原點O,被x軸截得的弦長OA=4 ,求圓M的半徑及圓心M的斜坐標(biāo).

如圖4,圓M的圓心斜坐標(biāo)為M(2,2),若圓上恰有兩個點到y軸的距離為1,則圓M的半徑r的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,都是等腰三角形,其中,,且

1)如圖①,連接,求證:;

2)如圖②,連接、,若,,,求的長;

3)如圖③,若,且點恰好落在上,試探究之間的數(shù)量關(guān)系,并加以說明.

查看答案和解析>>

同步練習(xí)冊答案