【題目】如圖,已知正方形ABCD的邊長為4,點E.F分別在邊AB.BC上,且AE=BF=1,CE.DF交于點O.下列結(jié)論:①∠DOC=90°,②OC=OE,③tan∠OCD=,④S△ODC=S四邊形BEOF中,正確的有_______________________.
【答案】①③④
【解析】
由正方形的ABCD的邊長為4,AE=BF=1,利用SAS易證得△EBC≌△FCD,然后全等三角形的對應(yīng)角相等,易證得①∠DOC=90°正確;②由線段垂直平分線的性質(zhì)與正方形的性質(zhì),可得②錯誤;易證得∠OCD=∠DFC,即可求得③正確;由全等三角形易證得④正確.
∵正方形的ABCD的邊長為4,
∴BC=CD=4,∠B=∠DCF=90°,
∵AE=BF=1,
∴BE=CF=4-1=3,
在△EBC和△FCD中,
,
∴△EBC≌△FCD(SAS),
∴∠CFD=∠BEC,
∴∠BCE+∠BEC=∠BCE+∠CFD=90°,
∴∠DOC=90°,
故①正確;
連接DE,如圖所示:
若OC=OE,
∵DF⊥EC,
∴CD=DE,
∵CD=AD<DE(矛盾),
故②錯誤;
∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,
∴∠OCD=∠DFC,
∴tan∠OCD=tan∠DFC=,
故③正確;
∵△EBC≌△FCD,
∴,
∴,
即S△ODC=S四邊形BEOF,
故④正確;
故答案為: ①③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正確的個數(shù)是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是實驗室中的一種擺動裝置,BC在地面上,支架ABC是底邊為BC的等腰直角三角形,擺動臂AD可繞點A旋轉(zhuǎn),擺動臂DM可繞點D旋轉(zhuǎn),AD=30,DM=10.
(1)在旋轉(zhuǎn)過程中,
①當(dāng)A,D,M三點在同一直線上時,求AM的長.
②當(dāng)A,D,M三點為同一直角三角形的頂點時,求AM的長.
(2)若擺動臂AD順時針旋轉(zhuǎn)90°,點D的位置由△ABC外的點D1轉(zhuǎn)到其內(nèi)的點D2處,連結(jié)D1D2,如圖2,此時∠AD2C=135°,CD2=60,求BD2的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①線段是的直徑,點在上,點在射線上運動(點不與點重合),直徑的垂線與的平行線相交于點連接設(shè)
求的取值范圍;
如圖②點是線段與的交點,若求證:直線與相切;
如圖③當(dāng)時,連接判斷四邊形的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圓O中,弦AB與CD相交于點E,且弧AC與弧BD相等.點D在劣弧AB上,聯(lián)結(jié)CO并延長交線段AB于點F,聯(lián)結(jié)OA、OB.當(dāng)OA=,且tan∠OAB=.
(1)求弦CD的長;
(2)如果△AOF是直角三角形,求線段EF的長;
(3)如果S△CEF=4S△BOF,求線段AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD,AB=4,BC=3,點P在BC邊上,將△CDP沿DP折疊,點C落在點E處,PE、DE分別交AB于點O、F,且OP=OF,則cos∠ADF的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:把一次函數(shù)y=kx+b的一次項系數(shù)和常數(shù)項互換得y=bx+k,我們稱y=kx+b和y=bx+k(其中k·b≠0,且|k|≠|(zhì)b|))為互助一次函數(shù),例如:y=-2x+3和y=3x-2就是互助一次函數(shù).如圖1所示,一次函數(shù)y=kx+b和它的互助一次函數(shù)的圖象1,2交于點P,1,2與x軸、y軸分別交于點A,B和點C,D.
(1)如圖1所示,當(dāng)k=-1,b=5時,直接寫出點P的坐標(biāo)是_________.
(2)如圖2所示,已知點M(-1,1.5),N(-2,0).試探究隨著k,b值的變化,MP+NP的值是否發(fā)生變化,若不變,求出MP+NP的值;若變化,求出使MP+NP取最小值時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店以每件50元的價格購進兩種服裝,已知銷售30件種服裝和40件種服裝共獲利潤1000元,銷售40件種服裝和50件種服裝共獲利潤1300元.
(1)求兩種服裝每件的售價;
(2)若該服裝店準(zhǔn)備購進兩種服裝共80件,并規(guī)定種服裝不少于種服裝的,設(shè)購進種服裝件,求利潤(元)與(件)之間的函數(shù)解析式,并求出當(dāng)取何值時,利潤最大,最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD,兩條對角線相交于O點,過點O作AC的垂線EF,分別交AD、BC于E、F點,連結(jié)CE,若OCcm,CD=4cm,則DE的長為( )
A.cmB.5cmC.3cmD.2cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com