精英家教網 > 初中數學 > 題目詳情

【題目】水果中的牛油果和桔子的維生素含量很高,因此深受人們喜愛,農夫果園水果商家11月份購進了第一批牛油果和桔子共300千克,已知牛油果進價每千克15元,售價每千克30元,桔子進價每千克5元,售價每千克10元.

(1)若這批牛油果和桔子全部銷售完獲利不低于3500元,則牛油果至少購進多少千克?

(2)第一批牛油果和桔子很快售完,于是商家決定購進第二批牛油果和桔子,牛油果和桔子的進價不變,牛油果售價比第一批上漲a%(其中a為正整數),桔子售價比第一批上漲2a%;銷量與(1)中獲得最低利潤時的銷量相比,牛油果的銷量下降a%,桔子的銷量保持不變,結果第二批中已經賣掉的牛油果和桔子的銷售總額比(1)中第一批牛油果和桔子銷售完后對應最低銷售總額增加了2%,求正整數a的值.

【答案】1)牛油果至少購進200千克;(2)正整數a的值為10

【解析】

1)設購進牛油果x千克,則購進桔子(300-x)千克,根據總利潤=每千克利潤×銷售數量結合獲利不低于3500元,即可得出關于x的一元一次不等式,解之取其最小值即可得出結論;

2)根據銷售總額=銷售單價×銷售數量,即可得出關于a的一元二次方程,解之取其正值即可得出結論.

1)設購進牛油果x千克,則購進桔子(300x)千克,

根據題意得:(3015x+105)(300x≥3500,

解得:x≥200

答:牛油果至少購進200千克.

(2)根據題意得:30(1+a%)×200(1﹣a%)+10(1+2a%)×100

=[30×200+10×100] ×1+2%

整理得:-a2+20a=140,

解得:a1=10a2=(不合題意,舍去).

答:正整數a的值為10.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.

(1)證明:PC=PE;

(2)求CPE的度數;

(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當ABC=120°時,連接CE,試探究線段AP與線段CE的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,若∠ADB是直角,求證:四邊形BFDE是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一筆直的海岸線上有AB兩個觀測點,BA的正東方向,AB4km.從A測得燈塔C在北偏東53°方向上,從B測得燈塔C在北偏西45°方向上,求燈塔C與觀測點A的距離(精確到0.1km)(參考數據:sin37°≈0.60cos37°≈0.80,tan37°≈0.75sin53°≈0.80,cos53°≈0.60tan53°≈1.33)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=10,AC=8BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點P,Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最小值是_______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】方格紙中每個小正方形的邊長都是單位1,OAB在平面直角坐標系中的位置如圖所示.解答問題:

(1)請按要求對ABO作如下變換:

OAB向下平移2個單位,再向左平移3個單位得到O1A1B1;

以點O為位似中心,位似比為2:1,將ABC在位似中心的異側進行放大得到OA2B2

(2)寫出點A1,A2的坐標: ,

(3)OA2B2的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列兩則材料,回答問題:

材料一:我們將稱為一對“對偶式”因為,所以構造“對倆式”相乘可以有效地將中的去掉.例如:已知,求 的值.解:

材料二:如圖,點,點,以AB為斜邊作,則,于是,,所以.反之,可將代數式的值看作點到點的距離.

例如:=

所以可將代數式的值看作點到點的距離.

利用材料一,解關于x的方程:,其中;

利用材料二,求代數式的最小值,并求出此時yx的函數關系式,寫出x的取值范圖;

所得的yx的函數關系式和x的取值范圍代入中解出x,直接寫出x的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】鐵路建設助推經濟發(fā)展,近年來我國政府十分重視鐵路建設.渝利鐵路通車后,從重慶到上海比原鐵路全程縮短了320千米,列車設計運行時速比原鐵路設計運行時速提高了120千米/小時,全程設計運行時間只需8小時,比原鐵路設計運行時間少用16小時.

(1)渝利鐵路通車后,重慶到上海的列車設計運行里程是多少千米?

(2)專家建議:從安全的角度考慮,實際運行時速減少m%,以便于有充分時間應對突發(fā)事件,這樣,從重慶到上海的實際運行時間將增加m%小時,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】構造圖形解題,它的應用十分廣泛,特別是有些技巧性很強的題目,如果不能發(fā)現題目中所隱含的幾何意義,而用通常的代數方法去思考,經常讓我們手足無措,難以下手,這時,如果能轉換思維,發(fā)現題目中隱含的幾何條件,通過構造適合的幾何圖形,將會得到事半功倍的效果,下面介紹兩則實例:

實例一:1876年,美國總統(tǒng)伽非爾德利用實例一圖證明了勾股定理:由S四邊形ABCD=SABC+SADE+SABE得:a+b2=2×ab+c2,化簡得:a2+b2=c2

實例二:歐幾里得的《幾何原本》記載,關于x的方程x2+ax=b2的圖解法是:畫RtABC,使∠ACB=90°BC=,AC=|b|,再在斜邊AB上截取BD=,則AD的長就是該方程的一個正根(如實例二圖).

請根據以上閱讀材料回答下面的問題:

1)如圖1,請利用圖形中面積的等量關系,寫出甲圖要證明的數學公式是______,乙圖要證明的數學公式是______,體現的數學思想是______

2)如圖2,若2-8是關于x的方程x2+ax=b2的兩個根,按照實例二的方式構造RtABC,連接CD,求CD的長;

3)若x,yz都為正數,且x2+y2=z2,請用構造圖形的方法求的最大值.

查看答案和解析>>

同步練習冊答案