【題目】(1)問(wèn)題發(fā)現(xiàn):如圖1,在等邊中,點(diǎn)為邊上一動(dòng)點(diǎn),交于點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接.則與的數(shù)量關(guān)系是_____,的度數(shù)為______.
(2)拓展探究:如圖2,在中,,,點(diǎn)為邊上一動(dòng)點(diǎn),交于點(diǎn),當(dāng)∠ADF=∠ACF=90°時(shí),求的值.
(3)解決問(wèn)題:如圖3,在中,,點(diǎn)為的延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),直接寫(xiě)出當(dāng)時(shí)的值.
【答案】(1),;(2);(3).
【解析】
(1)由題意可證△DEC是等邊三角形,∠AED=120°,可得DE=DC,由旋轉(zhuǎn)性質(zhì)可得∠ADF=60°=∠EDC,AD=DF,由“SAS”可證△ADE≌△FDC,可得AE=CF,∠AED=∠DCF=120°,可得∠ACF=60°;
(2)通過(guò)證明△DAE∽△DFC,可得,通過(guò)證明△EDC∽△ABC,可得,即可求的值;
(3)通過(guò)證明△DAE∽△DFC,可得,通過(guò)證明△EDC∽△ABC,可得,即可求的值;
解:(1)∵DE∥AB
∴∠ABC=∠EDC=60°,∠BAC=∠DEC=60°
∴△DEC是等邊三角形,∠AED=120°
∴DE=DC,
∵將AD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°得到DF,
∴∠ADF=60°=∠EDC,AD=DF
∴∠ADE=∠FDC,且CD=DE,AD=DF
∴△ADE≌△FDC(SAS)
∴AE=CF,∠AED=∠DCF=120°
∴∠ACF=60°,
故答案為AE=CF,60°
(2)∵∠ABC=90°,∠ACB=60°,
∴∠BAC=30°
∴tan∠BAC=
∵DE∥AB
∴∠EDC=∠ABC=90°
∵∠ADF=90°,
∴∠ADE=∠FDC
∵∠ACF=90°,∠AED=∠EDC+∠ACB,∠FCD=∠ACF+∠ACB
∴∠AED=∠FCD,且∠ADE=∠FDC
∴△DAE∽△DFC
∵DE∥AB
∴△EDC∽△ABC
(3)∵AB∥DE
∴∠ABC=∠BDE=∠ADF,∠BAC=∠E
∴∠BDE+∠ADB=∠ADF+∠ADB
∴∠ADE=∠CDF,
∵∠ACD=∠ABC+∠BAC=∠ACF+∠DCF,且∠ACF=∠ABC
∴∠BAC=∠DCF=∠E,且∠ADE=∠CDF
∴△ADE∽△FDC
∵DE∥AB
∴△EDC∽△ABC
∵
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若用“*”表示一種運(yùn)算規(guī)則,我們規(guī)定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下說(shuō)法中錯(cuò)誤的是( 。
A. 不等式(﹣2)*(3﹣x)<2的解集是x<3
B. 函數(shù)y=(x+2)*x的圖象與x軸有兩個(gè)交點(diǎn)
C. 在實(shí)數(shù)范圍內(nèi),無(wú)論a取何值,代數(shù)式a*(a+1)的值總為正數(shù)
D. 方程(x﹣2)*3=5的解是x=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某高樓頂部有一信號(hào)發(fā)射塔,在矩形建筑物ABCD的A、C兩點(diǎn)測(cè)得該塔頂端F的仰角分別為∠α=48°和∠β=65°,矩形建筑物寬度AD=20m,高度CD=30m,則信號(hào)發(fā)射塔頂端到地面的高度FG為__米(結(jié)果精確到1m).
參考數(shù)據(jù):sin48°=0.7,cos48°=0.7,tan48°=1.1,cos65°=0.4,tan65°=2.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.
(1)求證:四邊形ABCD是菱形;
(2)過(guò)點(diǎn)D作DE⊥BD,交BC的延長(zhǎng)線于點(diǎn)E,若BC=5,BD=8,求四邊形ABED的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,點(diǎn)是的中點(diǎn),點(diǎn)是邊上一動(dòng)點(diǎn),沿所在直線把翻折到的位置,若線段交于點(diǎn),且為直角三角形,則的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△OAC的頂點(diǎn)O在坐標(biāo)原點(diǎn),OA邊在x軸上,OA=2,AC=1,把△OAC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)到△O′AC′,使得點(diǎn)O′的坐標(biāo)是(1,),則在旋轉(zhuǎn)過(guò)程中線段OC掃過(guò)部分(陰影部分)的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班開(kāi)展安全知識(shí)競(jìng)賽活動(dòng),班長(zhǎng)將所有同學(xué)的成績(jī)(得分為整數(shù),滿分為100分)分成四類,并制作了如下的統(tǒng)計(jì)圖表:
類別 | 成績(jī) | 頻數(shù) |
甲 | 60≤m<70 | 5 |
乙 | 70≤m<80 | a |
丙 | 80≤m<90 | 10 |
丁 | 90≤m≤100 | 5 |
根據(jù)圖表信息,回答下列問(wèn)題:
(1)該班共有學(xué)生________人;表中a=________;
(2)將丁類的五名學(xué)生分別記為A、B、C、D、E,現(xiàn)從中隨機(jī)挑選兩名學(xué)生參加學(xué)校的決賽,請(qǐng)借助樹(shù)狀圖、列表或其他方式求B一定能參加決賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC,且∠ACB=90°.
(1)請(qǐng)用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫(xiě)作法和證明):
①以點(diǎn)A為圓心,BC邊的長(zhǎng)為半徑作⊙A;
②以點(diǎn)B為頂點(diǎn),在AB邊的下方作∠ABD=∠BAC.
(2)請(qǐng)判斷直線BD與⊙A的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,,分別是正方形的邊,上的點(diǎn),且,以為邊作正方形,與交于點(diǎn),連接.
(1)求證:;
(2)若是的中點(diǎn),求證:為的中點(diǎn);
(3)連接,設(shè),,,在(2)的條件下,判斷是否成立?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com