【題目】如圖所示,,分別是正方形的邊,上的點(diǎn),且,以為邊作正方形,與交于點(diǎn),連接.
(1)求證:;
(2)若是的中點(diǎn),求證:為的中點(diǎn);
(3)連接,設(shè),,,在(2)的條件下,判斷是否成立?并說(shuō)明理由.
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析
【解析】
(1)由正方形的性質(zhì)得出AD=DC,∠ADE=∠DCF=90°,再由SAS即可證出△ADE≌△DCF;
(2)先證出,再證明,得出比例式,證出,即可得出結(jié)論;
(3)先證明△AEQ∽△ECQ,得出△AEQ∽△ECQ∽△ADE,得出面積比等于相似比的平方,再由勾股定理即可得出結(jié)論.
(1)證明:由,,,得;
(2)證明:因?yàn)樗倪呅?/span>是正方形,
所以,所以.
又因?yàn)?/span>,所以.
因?yàn)?/span>,所以,
所以.
因?yàn)?/span>是的中點(diǎn),所以,所以
因?yàn)?/span>,所以,即是的中點(diǎn).
(3)解:成立.
理由:因?yàn)?/span>,所以,
所以.
因?yàn)?/span>,
所以,
所以.
所以,.
所以.
在中,由勾股定理,得,
所以,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖1,在等邊中,點(diǎn)為邊上一動(dòng)點(diǎn),交于點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接.則與的數(shù)量關(guān)系是_____,的度數(shù)為______.
(2)拓展探究:如圖2,在中,,,點(diǎn)為邊上一動(dòng)點(diǎn),交于點(diǎn),當(dāng)∠ADF=∠ACF=90°時(shí),求的值.
(3)解決問(wèn)題:如圖3,在中,,點(diǎn)為的延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),直接寫(xiě)出當(dāng)時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB是⊙O的直徑,點(diǎn)D是弧AC的中點(diǎn),∠COB=60°,過(guò)點(diǎn)C作CE⊥AD,交AD的延長(zhǎng)線于點(diǎn)E.
(1)求證:CE為⊙O的切線;
(2)若CE=,求⊙O的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】五一期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品1件和乙商品3件共需240元;購(gòu)進(jìn)甲商品2件和乙商品1件共需130元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并確定最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y1=ax2+bx+c(a>0)的圖象與x軸交于A(﹣1,0)、B(n,0)兩點(diǎn),一次函數(shù)y2=2x+b的圖象過(guò)點(diǎn)A.
(1)若a=,
①求二次函數(shù)y1=ax2+bx+c(a>0)的函數(shù)關(guān)系式;
②設(shè)y3=y1﹣my2,是否存在正整數(shù)m,當(dāng)x≥0時(shí),y3隨x的增大而增大?若存在,求出正整數(shù)m的值;若不存在,請(qǐng)說(shuō)明理由;
(2)若<a<,求證:﹣5<n<﹣4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,熱氣球的探測(cè)器顯示,從熱氣球A看一棟大樓頂部B的俯角為,看這棟大樓底部C的俯角為,熱氣球A的高度為270米,則這棟大樓的高度為______米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠A=60°,AD=4,點(diǎn)F是AB的中點(diǎn),過(guò)點(diǎn)F作FE⊥AD,垂足為E,將△AEF沿點(diǎn)A到點(diǎn)B的方向平移,得到△A'E'F',設(shè)點(diǎn)P、P'分別是EF、E'F'的中點(diǎn),當(dāng)點(diǎn)A'與點(diǎn)B重合時(shí),四邊形PP'CD的面積為( 。
A. 7B. 6C. 8D. 8﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)A(1,).
(1)試確定此反比例函數(shù)的解析式;
(2)點(diǎn)O是坐標(biāo)原點(diǎn),將線OA繞O點(diǎn)順時(shí)針旋轉(zhuǎn)30°得到線段OB,判斷點(diǎn)B是否在此反比例函數(shù)的圖象上,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com