【題目】若點(diǎn)Pm+1,m–1)在x軸上,則點(diǎn)P的坐標(biāo)是( )

A.20B.0,2C.–20D.0,–2

【答案】A

【解析】

根據(jù)x軸上的點(diǎn)縱坐標(biāo)等于0列出方程求解得到m的值,再進(jìn)行計(jì)算即可得解.

解:∵點(diǎn)Pm+1,m-1)在x軸上,

m-1=0,解得:m=1,

m+1=1+1=2,

∴點(diǎn)P的坐標(biāo)為(20).

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AB=4,B=60°,AEBC,AFCD,垂足分別為E,F(xiàn),連接EF,則AEF的面積是(

A.4 B.3 C.2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)﹣(﹣1)﹣+(π﹣3.14)0;

(2)2×(1﹣)+

(3)

(4);

(5);

(6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,是假命題的是( 。

A. 如果一個(gè)等腰三角形有兩邊長分別是1,3,那么三角形的周長為7

B. 等邊三角形的高、角平分線和中線一定重合

C. 兩個(gè)全等三角形的面積一定相等

D. 有兩條邊對(duì)應(yīng)相等的兩個(gè)直角三角形一定全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正多邊形的每一個(gè)內(nèi)角為135°,則該正多邊形的邊數(shù)為(

A.12B.10C.8D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點(diǎn),作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則結(jié)論:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正確的有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(1,2),B(3,1),C(4,3).

(1)作ABC關(guān)于y軸的對(duì)稱圖形A1B1C1,寫出點(diǎn)C1的坐標(biāo);

(2)直線m平行于x軸,在直線m上求作一點(diǎn)P使得ABP的周長最小,請(qǐng)?jiān)趫D中畫出P點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+=1+2.善于思考的小明進(jìn)行了以下探索:

設(shè)a+b=m+n2(其中a、b、mn均為整數(shù)),則有a+b=m2+2n2+2mn

a=m2+2n2b=2mn.這樣小明就找到了一種把類似a+b的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問題:

1當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=m+n)2,用含m、n的式子分別表示a、b,得:a= ,b= ;

2利用探索的結(jié)論,找一組正整數(shù)a、b、m、n ab都不超過20

填空:   +  =   +   2;

3)若a+6=(m+n)2,且a、m、n均為正整數(shù),求a的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列單項(xiàng)式:﹣a,2a2 , ﹣3a3 , 4a4 , ﹣5a5 , …可以得到第2016個(gè)單項(xiàng)式是;第n個(gè)單項(xiàng)式是

查看答案和解析>>

同步練習(xí)冊(cè)答案