正方形ABCD的邊長(zhǎng)為4,M、N分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)M在BC上運(yùn)動(dòng)時(shí),保持AM和MN垂直,  
(1)證明:Rt△ABM∽R(shí)t△MCN;
(2)設(shè)BM =x,梯形ABCN的面積為y求y與x之間的函數(shù)關(guān)系式;當(dāng)點(diǎn)M運(yùn)動(dòng)到什么位     置時(shí),四邊形ABCN的面積最大,并求出最大面積; 
 (3)當(dāng)點(diǎn)M運(yùn)動(dòng)到什么位置時(shí)Rt△ABM∽R(shí)t△AMN,求此時(shí)x的值
解:(1)在正方形ABCD中,AB =BC= CD =4,∠B= ∠C =90°,   
∵AM⊥MN
∴∠AMN= 90°.   
 ∴∠CMN+∠AMB= 90°.  
  在Rt△ABM中,∠MAB+∠AMB=90°,
 ∴∠CMN=∠MAB.   
∴Rt△AMN∽R(shí)t△MCN;   
 (2)∵Rt△ABM∽R(shí)t△MCN,





當(dāng)x=2時(shí),y取最大值,最大值為10;故當(dāng)點(diǎn)肘運(yùn)動(dòng)到BC的中點(diǎn)時(shí),四邊形ABCN的面積最大,最大面積為10;    
(3)∵∠B=∠AMN= 90°,
∴要使Rt△ABM∽R(shí)t△AMN,必須

由(1)知
∴BM=MC
∴當(dāng)點(diǎn)M運(yùn)動(dòng)到BC的中點(diǎn)時(shí),Rt△ABM∽R(shí)t△AMN,此時(shí)x=2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)附加題
如圖所示,正方形ABCD的邊長(zhǎng)為7,AE=BF=CG=DH=3,甲、乙兩只螞蟻同時(shí)從A點(diǎn)出發(fā),甲螞蟻以每秒
3
5
的速度沿路線(xiàn)AE→EF→FG→GH→HE→EB→BC→CD→DA循環(huán)爬行;乙螞蟻以每秒
4
5
的速度沿路線(xiàn)AH→HG→GF→FE→EH→HD→DC→CB→BA循環(huán)爬行.那么出發(fā)后兩只螞蟻在第
 
s第一次相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD的邊長(zhǎng)為4,P為對(duì)角線(xiàn)AC上一點(diǎn),且CP=3
2
,PE⊥PB交CD于點(diǎn)E,則PE=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

正方形ABCD的邊長(zhǎng)為4,P是BC上一動(dòng)點(diǎn),QP⊥AP交DC于Q,設(shè)PB=x,△ADQ的面積為y.
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)(1)中函數(shù)若是一次函數(shù),求出直線(xiàn)與兩坐標(biāo)軸圍成的三角形面積;若是二次函數(shù),請(qǐng)利用配方法求出拋物線(xiàn)的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo);
(3)畫(huà)出這個(gè)函數(shù)的圖象;
(4)點(diǎn)P是否存在這樣的位置,使△APB的面積是△ADQ的面積的
23
?若存在,求出BP的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊長(zhǎng)為12cm,E為CD邊上一點(diǎn),DE=5cm.以點(diǎn)A為中心,將△ADE按順時(shí)針?lè)较蛐D(zhuǎn)得△ABF,則點(diǎn)E所經(jīng)過(guò)的路徑長(zhǎng)為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)M在邊DC上,M,N兩點(diǎn)關(guān)于對(duì)角線(xiàn)AC對(duì)稱(chēng),若DM=2,則tan∠ADN=
3
2
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案