精英家教網 > 初中數學 > 題目詳情

如圖,點P為⊙O外一點,過點P作⊙O的兩條切線,切點分別為AB.過點APB的平行線,交⊙O于點C.連結PC,交⊙O于點E;連結AE,并延長AEPB于點K.求證:PE?AC=CE?KB

證明:因為ACPB,所以∠KPE=ACE.又PA是⊙O的切線,

所以∠KAP=ACE,故∠KPE=KAP,于是

                  △KPE∽△KAP,

所以     ,  即 

     由切割線定理得    

所以     .     

因為ACPB,△KPE∽△ACE,于是

   故       ,

即     PE?AC=CE?KB. 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,點P是⊙O外一點,PAB為⊙O的一條割線,且PA=AB,PO交⊙O于點C,若OC=3,OP=5,則AB長為( 。
A、
10
B、2
2
C、
6
D、
5

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖①,點C為線段AB上一點,△ACM和△CBN都是等邊三角形,AN,BM交于點P,則△BCM≌△NCA,易證結論:①BM=AN.
(1)請寫出除①外的兩個結論:②
∠MBC=∠ANC
∠MBC=∠ANC
;③
∠BMC=∠NAC
∠BMC=∠NAC

(2)將△ACM繞點C順時針方向旋轉180°,使點A落在BC上.請對照原題圖形在圖②畫出符合要求的圖形.(不寫作法,保留作圖痕跡)
(3)在(2)所得到的下圖②中,探究“AN=BM”這一結論是否成立.若成立,請證明:若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,點P為⊙O外一點,PO及延長線分別交⊙O于A、B,過點P作一直線交⊙O于M、N(異于A、B).求證:
(1)AB>MN;
(2)PB>PN;
(3)PA<PM.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

作業(yè)寶如圖,點P為⊙O外一點,PO及延長線分別交⊙O于A、B,過點P作一直線交⊙O于M、N(異于A、B).求證:
(1)AB>MN;
(2)PB>PN;
(3)PA<PM.

查看答案和解析>>

科目:初中數學 來源:第3章《圓》中考題集(29):3.2 點、直線與圓的位置關系,圓的切線(解析版) 題型:選擇題

如圖,點P是⊙O外一點,PAB為⊙O的一條割線,且PA=AB,PO交⊙O于點C,若OC=3,OP=5,則AB長為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案