如圖1,平面之間坐標(biāo)系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動(dòng),點(diǎn)C的坐標(biāo)為(t,0),直角邊AC=4,經(jīng)過O,C兩點(diǎn)做拋物線y1=ax(x﹣t)(a為常數(shù),a>0),該拋物線與斜邊AB交于點(diǎn)E,直線OA:y2=kx(k為常數(shù),k>0)
(1)填空:用含t的代數(shù)式表示點(diǎn)A的坐標(biāo)及k的值:A。╰,4) ,k=。╧>0) ;
(2)隨著三角板的滑動(dòng),當(dāng)a=時(shí):
①請(qǐng)你驗(yàn)證:拋物線y1=ax(x﹣t)的頂點(diǎn)在函數(shù)y=的圖象上;
②當(dāng)三角板滑至點(diǎn)E為AB的中點(diǎn)時(shí),求t的值;
(3)直線OA與拋物線的另一個(gè)交點(diǎn)為點(diǎn)D,當(dāng)t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當(dāng)x≥t+4時(shí),|y2﹣y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.
考點(diǎn):
二次函數(shù)綜合題.
分析:
(1)根據(jù)題意易得點(diǎn)A的橫坐標(biāo)與點(diǎn)C的相同,點(diǎn)A的縱坐標(biāo)即是線段AC的長度;把點(diǎn)A的坐標(biāo)代入直線OA的解析式來求k的值;
(2)①求得拋物線y1的頂點(diǎn)坐標(biāo),然后把該坐標(biāo)代入函數(shù)y=,若該點(diǎn)滿足函數(shù)解析式y(tǒng)=,即表示該頂點(diǎn)在函數(shù)y=圖象上;反之,該頂點(diǎn)不在函數(shù)y=圖象上;
②如圖1,過點(diǎn)E作EK⊥x軸于點(diǎn)K.則EK是△ACB的中位線,所以根據(jù)三角形中位線定理易求點(diǎn)E的坐標(biāo),把點(diǎn)E的坐標(biāo)代入拋物線y1=x(x﹣t)即可求得t=2;
(3)如圖2,根據(jù)拋物線與直線相交可以求得點(diǎn)D橫坐標(biāo)是+4.則t+4=+4,由此可以求得a與t的關(guān)系式.
解答:
解:(1)∵點(diǎn)C的坐標(biāo)為(t,0),直角邊AC=4,
∴點(diǎn)A的坐標(biāo)是(t,4).
又∵直線OA:y2=kx(k為常數(shù),k>0),
∴4=kt,則k=(k>0).
(2)①當(dāng)a=時(shí),y1=x(x﹣t),其頂點(diǎn)坐標(biāo)為(,﹣).
對(duì)于y=來說,當(dāng)x=時(shí),y=×=﹣,即點(diǎn)(,﹣)在拋物線y=上.
故當(dāng)a=時(shí),拋物線y1=ax(x﹣t)的頂點(diǎn)在函數(shù)y=的圖象上;
②如圖1,過點(diǎn)E作EK⊥x軸于點(diǎn)K.
∵AC⊥x軸,
∴AC∥EK.
∵點(diǎn)E是線段AB的中點(diǎn),
∴K為BC的中點(diǎn),
∴EK是△ACB的中位線,
∴EK=AC=2,CK=BC=2,
∴E(t+2,2).
∵點(diǎn)E在拋物線y1=x(x﹣t)上,
∴(t+2)(t+2﹣t)=2,
解得t=2.
(3)如圖2,,則x=ax(x﹣t),
解得x=+4,或x=0(不合題意,舍去)..
故點(diǎn)D的橫坐標(biāo)是+t.
當(dāng)x=+t時(shí),|y2﹣y1|=0,由題意得t+4=+t,
解得a=(t>0).
點(diǎn)評(píng):
本題考查了坐標(biāo)與圖形的性質(zhì)、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、一次函數(shù)與二次函數(shù)交點(diǎn)坐標(biāo)等知識(shí)點(diǎn).解題時(shí),注意“數(shù)形結(jié)合”數(shù)學(xué)思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2013年湖北省宜昌市高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044
如圖1,平面之間坐標(biāo)系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動(dòng),點(diǎn)C的坐標(biāo)為(t,0),直角邊AC=4,經(jīng)過O,C兩點(diǎn)做拋物線y1=ax(x-t)(a為常數(shù),a>0),該拋物線與斜邊AB交于點(diǎn)E,直線OA:y2=kx(k為常數(shù),k>0)
(1)填空:用含t的代數(shù)式表示點(diǎn)A的坐標(biāo)及k的值:A________,k=________;
(2)隨著三角板的滑動(dòng),當(dāng)a=時(shí):
①請(qǐng)你驗(yàn)證:拋物線y1=ax(x-t)的頂點(diǎn)在函數(shù)y=-x2的圖象上;
②當(dāng)三角板滑至點(diǎn)E為AB的中點(diǎn)時(shí),求t的值;
(3)直線OA與拋物線的另一個(gè)交點(diǎn)為點(diǎn)D,當(dāng)t≤x≤t+4,|y2-y1|的值隨x的增大而減小,當(dāng)x≥t+4時(shí),|y2-y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(湖北宜昌卷)數(shù)學(xué)(解析版) 題型:解答題
如圖1,平面之間坐標(biāo)系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動(dòng),點(diǎn)C的坐標(biāo)為(t,0),直角邊AC=4,經(jīng)過O,C兩點(diǎn)做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點(diǎn)E,直線OA:y2=kx(k為常數(shù),k>0)
(1)填空:用含t的代數(shù)式表示點(diǎn)A的坐標(biāo)及k的值:A ,k= ;
(2)隨著三角板的滑動(dòng),當(dāng)a=時(shí):
①請(qǐng)你驗(yàn)證:拋物線的頂點(diǎn)在函數(shù)的圖象上;
②當(dāng)三角板滑至點(diǎn)E為AB的中點(diǎn)時(shí),求t的值;
(3)直線OA與拋物線的另一個(gè)交點(diǎn)為點(diǎn)D,當(dāng)t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當(dāng)x≥t+4時(shí),|y2﹣y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com