【題目】如圖,OA是⊙O的半徑,點E為圓內一點,且OA⊥OE,AB是⊙O的切線,EB交⊙O于點F,BQ⊥AF于點Q.
(1)如圖1,求證:OE∥AB;
(2)如圖2,若AB=AO,求的值;
(3)如圖3,連接OF,∠EOF的平分線交射線AF于點P,若OA=2,cos∠PAB=,求OP的長.
【答案】(1)證明見解析;(2);(3).
【解析】
(1)利用切線的性質證得∠AOE+∠OAB=180°,利用同旁內角互補兩直線平行證得OE∥AB;
(2)過O點作OC⊥AF于點C,證得△AOC≌△BAQ(AAS)后得到AC=BQ,進一步得到AF=2AC=2BQ,從而求得兩條線段的比;
(3)過O點作OC⊥AF于點C,解直角三角形求得OC的長,然后證得△POC為等腰直角三角形,利用等腰三角形的性質求得線段OP 的長即可.
解:(1)
∵OA⊥OE,
∴∠AOE=90°,
又∵AB是⊙O的切線,OA是⊙O的半徑,
∴OA⊥AB
∴∠OAB=90°,
∴∠AOE+∠OAB =180°,
∴OE∥AB.
(2)如圖2,過O點作OC⊥AF于點C,
∴AF=2AC, ∠OCA=90°,
∴∠AOC+∠OAC =90°,
又∵OA⊥AB,
∴∠OAC+∠CAB =90°,
∴∠AOC=∠CAB,
又∵BQ⊥AF,
∴∠AQB =90°,
∴∠ACO =∠AQB
又∵OA =AB,
∴△AOC≌△BAQ(AAS),
∴AC =BQ,
∴AF=2AC =2BQ,
即;
(3)如圖3:過O點作OC⊥AF于點C,
由(2)得∠AOC =∠PAB,
∴,
在Rt△AOC中, OA =2,
∴OC===,
又∵OA=OF,OC⊥AF于點C,
∴∠COF=∠AOF,
又∵OP平分∠EOF,
∴∠POF=∠EOF,
∴∠POC=∠COF+∠POF=∠AOF+∠EOF=∠EOA=45°,
∴△POC為等腰直角三角形
∴.
科目:初中數(shù)學 來源: 題型:
【題目】在奉賢創(chuàng)建文明城區(qū)的活動中,有兩段長度相等的彩色道磚鋪設任務,分別交給甲、乙兩個施工隊同時進行施工.如圖是反映所鋪設彩色道磚的長度y(米)與施工時間x(時)之間關系的部分圖象.請解答下列問題:
(1)求乙隊在2≤x≤6的時段內,y與x之間的函數(shù)關系式;
(2)如果甲隊施工速度不變,乙隊在開挖6小時后,施工速度增加到12米/時,結果兩隊同時完成了任務.求甲隊從開始施工到完工所鋪設的彩色道磚的長度為多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形OABC是邊長為2的正方形,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A、E兩點,且點E的坐標為(﹣,0),以0C為直徑作半圓,圓心為D.
(1)求二次函數(shù)的解析式;
(2)求證:直線BE是⊙D的切線;
(3)若直線BE與拋物線的對稱軸交點為P,M是線段CB上的一個動點(點M與點B,C不重合),過點M作MN∥BE交x軸與點N,連結PM,PN,設CM的長為t,△PMN的面積為S,求S與t的函數(shù)關系式,并寫出自變量t的取值范圍.S是否存在著最大值?若存在,求出最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著通訊技術的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選一種),在全校范圍內隨機調查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計共抽查了 名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補充完整;
(3)該校共有1500名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名?
(4)某天甲、乙兩名同學都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學恰好選擇同一種溝通方式的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=6,E為AC邊上的點且AE=2EC,點D在BC邊上且滿足BD=DE,設BD=y,S△ABC=x,則y與x的函數(shù)關系式為( )
A.y=x2+B.y=x2+
C.y=x2+2D.y=x2+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象與x軸、y軸交于A、B兩點,交反比例函數(shù)于C、D兩點,DE⊥x軸于點E,已知C點的坐標是(6,-1),DE=3.
(1)求反比例函數(shù)與一次函數(shù)的解析式
(2)根據(jù)圖象直接回答:當x為何值時,一次函數(shù)的值大于反比例函數(shù)的值.
(3)求△OAD的面積S△OAD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點C在上,CD⊥OA,垂足為點D,當△OCD的面積最大時,圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,菱形ABCD位于平面直角坐標系中,拋物線y=ax2+bx+c經(jīng)過菱形的三個頂點A、B、C,已知A(﹣3,0)、B(0,﹣4).
(1)求拋物線解析式;
(2)線段BD上有一動點E,過點E作y軸的平行線,交BC于點F,若S△BOD=4S△EBF,求點E的坐標;
(3)拋物線的對稱軸上是否存在點P,使△BPD是以BD為斜邊的直角三角形?如果存在,求出點P的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把兩個全等的矩形ABCD和EFGH如圖1擺放(點D和點G重合,點C和點H重合),點A、D(G)在同一條直線上,AB=6cm,BC=8cm.如圖2,△ABC從圖1位置出發(fā),沿BC方向勻速運動,速度為1cm/s,AC與GH交于點P;同時,點Q從點E出發(fā),沿EF方向勻速運動,速度為1cm/s.點Q停止運動時,△ABC也停止運動.設運動時間為t(s)(0<t<6).
(1)當t為何值時,CQ∥FH;
(2)過點Q作QM⊥FH于點N,交GF于點M,設五邊形GBCQM的面積為y(cm2),求y與t之間的函數(shù)關系式;
(3)在(2)的條件下,是否存在某一時刻,使點M在線段PC的中垂線上?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com