【題目】如果拋物線C1的頂點在拋物線C2上,同時,拋物線C2的頂點在拋物線C1上,那么,我們稱拋物線C1與拋物線C2互相依存.

(1)已知拋物線①:y=﹣2x2+4x+3與拋物線②:y=2x2+4x﹣1,請判斷拋物線與拋物線是否互相依存,并說明理由.

(2)將拋物線C1:y=﹣2x2+4x+3沿x軸翻折,再向右平移m(m0)個單位,得到拋物線C2,若拋物線C1與C2互相依存,求m的值.

(3)試問:如果對稱軸不同的兩條拋物線(二次函數(shù)圖象)互相依存,那么它們的函數(shù)表達式中的二次項系數(shù)之間有什么數(shù)量關系?請說明理由.

【答案】(1)拋物線與拋物線相互依存(2) (3)0

【解析】

(1)根據(jù)兩拋物線的關聯(lián)依次判斷即可;
(2)根據(jù)兩拋物線關聯(lián)的定義直接列式得出結論;
(3)設互相依存的一條拋物線為y1=a1xm12+n1

另一條拋物線為y2=a2xm22+n2,分別代入頂點,兩式相加.

(1)由拋物線知,y=﹣2x2+4x+3=﹣2(x﹣1)2+5,頂點坐標為(1,5),

把x=1代入拋物線②:y=2x2+4x﹣1,得y=5,

拋物線的頂點在拋物線上,

又由拋物線知,y=2(x+1)2﹣3,頂點坐標為(﹣1,﹣3),

把x=﹣1代入拋物線中,得,y=﹣3,

拋物線的頂點在拋物線上,

拋物線與拋物線相互依存.

(2)由拋物線①:y=﹣2(x﹣1)2+5,沿x軸翻折后為y=2(x﹣1)2﹣5,

設平移后的拋物線解析式為y=2(x﹣1﹣m)2﹣5,

把x=1,y=5代入得2(1﹣1﹣m)2﹣5=5,

∴m=±

∵m>0,

∴m=,

當m= 時,得到拋物線C2:y=2(x﹣1﹣2﹣5,頂點為(1+,﹣5),

把x=1+代入拋物線C1,得y=﹣5,

∴m=;

(3)它們的二次項系數(shù)互為相反數(shù),理由如下:

設互相依存的一條拋物線為y1=a1(x﹣m12+n1,頂點為(m1,n1

另一條拋物線為y2=a2(x﹣m22+n2,頂點為(m2,n2),其中m1≠m2,

把(m2,n2)代入y1,得n2=a1(m2﹣m12+n1,①

把(m1,n1)代入y2,得n1=a2(m1﹣m22+n2

①+②得,a1(m2﹣m12+a2(m1﹣m22=0

∵m1≠m2,

∴a1+a2=0.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).

(1)求證無論k為何值,方程總有兩個不相等實數(shù)根;

(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;

(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是⊙O的直徑,點D是⊙O 上一點,⊙O的切線CBAD的延長線交于點B,點F是直徑AC上一點,連接DF并延長交⊙O于點E,連接AE.

(1)求證:∠ABC=AED;

(2)連接BF,若AD=,AF=6,tanAED=,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商貿(mào)公司有兩種型號的商品需運出,這兩種商品的體積和質(zhì)量分別如下表所示:

體積(立方米/件)

質(zhì)量(噸/件)

型商品

08

05

型商品

2

1

1)已知一批商品有兩種型號,體積一共是20立方米,質(zhì)量一共是105噸,求、兩種型號商品各有幾件?

2)物資公司現(xiàn)有可供使用的貨車每輛額定載重35噸,容積為6立方米,其收費方式有以下兩種:

車收費:每輛車運輸貨物到目的地收費600元;

②按噸收費:每噸貨物運輸?shù)侥康牡厥召M200元.

現(xiàn)要將(1)中商品一次或分批運輸?shù)侥康牡,如果兩種收費方式可混合使用,商貿(mào)公司應如何選擇運送、付費方式,使其所花運費最少,最少運費是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的布袋中裝有4個只有顏色不同的球,其中1個黃球、1個藍球、2個紅球.

(1)任意摸出1個球,記下顏色后不放回,再任意摸出1個球.求兩次摸出的球恰好都是紅球的概率(要求畫樹狀圖或列表);

(2)現(xiàn)再將n個黃球放入布袋,攪勻后,使任意摸出1個球是黃球的概率為,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來網(wǎng)約車十分流行,初三某班學生對美團滴滴兩家網(wǎng)約車公司各10名司機月收入進行了一項抽樣調(diào)查,司機月收入(單位:千元)如圖所示:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均月收入/千元

中位數(shù)/千元

眾數(shù)/千元

方差/千元2

美團

6

6

1.2

滴滴

6

4

(1)完成表格填空;

(2)若從兩家公司中選擇一家做網(wǎng)約車司機,你會選哪家公司,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(類比概念)三角形的內(nèi)切圓是以三個內(nèi)角的平分線的交點為圓心,以這點到三邊的距離為半徑的圓,則三角形可以稱為圓的外切三角形,可以得出三角形的三邊與該圓相切.以此類推,如圖1,各邊都和圓相切的四邊形稱為圓外切四邊形

(性質(zhì)探究)如圖1,試探究圓外切四邊形的ABCD兩組對邊AB,CDBC,AD之間的數(shù)量關系

猜想結論:   (要求用文字語言敘述)

寫出證明過程(利用圖1,寫出已知、求證、證明)

(性質(zhì)應用)

①初中學過的下列四邊形中哪些是圓外切四邊形   (填序號)

A:平行四邊形:B:菱形:C:矩形;D:正方形

②如圖2,圓外切四邊形ABCD,且AB=12,CD=8,則四邊形的周長是   

③圓外切四邊形的周長為48cm,相鄰的三條邊的比為5:4:7,求四邊形各邊的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB⊙O的直徑,D⊙O上一點,OD⊥AC,垂足為E,連接BD.

(1)求證:BD平分∠ABC

(2) ∠ODB=30°時,求證:BC=OD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E、F分別在BC、CD上移動,但AEF的距離AH始終保持與AB長相等,問在E、F移動過程中:

(1)∠EAF的大小是否有變化?請說明理由.

(2)△ECF的周長是否有變化?請說明理由.

查看答案和解析>>

同步練習冊答案