【題目】如圖,直線y=﹣x+5與雙曲線y= (x>0)相交于A,B兩點,與x軸相交于C點,△BOC的面積是 .若將直線y=﹣x+5向下平移1個單位,則所得直線與雙曲線y= (x>0)的交點有(
A.0個
B.1個
C.2個
D.0個,或1個,或2個

【答案】B
【解析】解:令直線y=﹣x+5與y軸的交點為點D,過點B作BE⊥x軸于點E,如圖所示.
令直線y=﹣x+5中y=0,則0=﹣x+5,解得:x=5,
即OC=5.
∵△BOC的面積是 ,
OCBE= ×5BE=
解得:BE=1.
結(jié)合題意可知點B的縱坐標(biāo)為1,
當(dāng)y=1時,有1=﹣x+5,
解得:x=4,
∴點B的坐標(biāo)為(4,1),
∴k=4×1=4,
即雙曲線解析式為y=
將直線y=﹣x+5向下平移1個單位得到的直線的解析式為y=﹣x+5﹣1=﹣x+4,
將y=﹣x+4代入到y(tǒng)= 中,得:﹣x+4=
整理得:x2﹣4x+4=0,
∵△=(﹣4)2﹣4×4=0,
∴平移后的直線與雙曲線y= 只有一個交點.
故選B.
令直線y=﹣x+5與y軸的交點為點D,過點B作BE⊥x軸于點E,根據(jù)一次函數(shù)圖象上點的坐標(biāo)特征以及△BOC的面積是 即可得出BE的長度,進而可找出點B的坐標(biāo),根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征即可得出反比例函數(shù)系數(shù)k的值,根據(jù)平移的性質(zhì)找出平移后的直線的解析式將其代入反比例函數(shù)解析式中,整理后根據(jù)根的判別式的正負即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形中,AB=AC,BC=4,D為BC的中點,點E、F在線段AD上,tan∠ABC=3,則陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某水上樂園有一個滑梯AB,高度AC為6米,傾斜角為60°,暑期將至,為改善滑梯AB的安全性能,把傾斜角由60°減至30°

(1)求調(diào)整后的滑梯AD的長度;
(2)調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數(shù)據(jù): ≈1.41, , ≈2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料,先完成閱讀填空,再按要求答題:
(1)閱讀填空
sin30°= ,cos30°= ,則sin230°+cos230°= ;①
sin45°= ,cos45°= ,則sin245°+cos245°= ;②
sin60°= ,cos60°= ,則sin260°+cos260°= .③

觀察上述等式,猜想:對任意銳角A,都有sin2A+cos2A= .④
(2)如圖,在銳角三角形ABC中,利用三角函數(shù)的定義及勾股定理對∠A證明你的猜想;

(3)已知:∠A為銳角(cosA>0)且sinA= ,求cosA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+5與雙曲線y= (x>0)相交于A,B兩點,與x軸相交于C點,△BOC的面積是 .若將直線y=﹣x+5向下平移1個單位,則所得直線與雙曲線y= (x>0)的交點有(
A.0個
B.1個
C.2個
D.0個,或1個,或2個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點,與y軸相交于點C,直線y=kx+n(k≠0)經(jīng)過B,C兩點,已知A(1,0),C(0,3),且BC=5.

(1)分別求直線BC和拋物線的解析式(關(guān)系式);
(2)在拋物線的對稱軸上是否存在點P,使得以B,C,P三點為頂點的三角形是直角三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知l1∥l2∥l3 , 相鄰兩條平行直線間的距離相等,若等腰直角△ABC的三個頂點分別在這三條平行直線上,則sinα的值是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某校舉行的“中國學(xué)生營養(yǎng)日”活動中,設(shè)計了抽獎環(huán)節(jié):在一只不透明的箱子中有3個球,其中2個紅球,1個白球,它們除顏色外均相同.
(1)隨機摸出一個球,恰好是紅球就能中獎,則中獎的概率是多少?
(2)同時摸出兩個球,都是紅球 就能中特別獎,則中特別獎的概率是多少?(要求畫樹狀圖或列表求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)決定在學(xué)生中開展丟沙包、打籃球、跳大繩和踢毽球四種項目的活動,為了解學(xué)生對四種項目的喜歡情況,隨機調(diào)查了該校m 名學(xué)生最喜歡的一種項目(每名學(xué)生必選且只能選擇四種活動項目的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計圖表:
學(xué)生最喜歡的活動項目的人數(shù)統(tǒng)計表


根據(jù)圖表中提供的信息,解答下列問題:
(1)m=;n=;p=.
(2)請根據(jù)以上信息直接補全條形統(tǒng)計圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請你估計該校2000 名學(xué)生中有多少名學(xué)生最喜歡跳大繩.

查看答案和解析>>

同步練習(xí)冊答案