如圖,已知△ABC中,BD、CE是高,F(xiàn)是BC中點(diǎn),連接DE、EF和DF.
(1)求證:△DEF是等腰三角形;
(2)若∠A=45°,試判斷△DEF的形狀,并說(shuō)明理由;
(3)若∠A:∠DFE=5:2,BC=4,求△DEF的面積.
(1)證明見(jiàn)試題解析;(2)△DEF是等腰直角三角形,理由見(jiàn)試題解析;(3)1.
【解析】
試題分析:(1)由直角三角形斜邊上直線的性質(zhì)可得:EF=BC=DF;故△DEF為等腰三角形;
(2)由△BEF和△DFC為等腰三角形和∠A=45°,求出∠EFD的度數(shù)即可;
(3)設(shè)∠A=5,則∠DFE=2,用(2)類(lèi)似的方法求出∠DFE=30°,作出△EDF邊DF上的高EG,求出EG的長(zhǎng)即可.
試題解析:(1)證明:∵BD、CE是高,F(xiàn)是BC中點(diǎn),∴EF=BC=DF,∴△DEF是等腰三角形.
(2)△DEF是等腰直角三角形;理由:∵∠A=45°,∴∠EBF+∠DCF=180°-45°=135°,∵EF=BC=DF,∴∠EBF=∠FEB,同理,∠DCF=∠FDC,∴∠FEB+∠FDC=135°,
∴∠BFE+∠CFD=180°+180°-135°-135°=90°,∴∠DFE=180°-90°=90°,∴△DEF是等腰直角三角形.
(3)作EG⊥DF于G,設(shè)∠A=5,∠DFE=2,∵EF=BF,DF=FC,∴∠FBE=∠BEF,∠FCD=∠FDC,
∴∠BFE+∠CFD=180°-2∠FBE+180°-2∠FCD=2(180°-∠FBE-∠FCD)=2∠A=,∵,∴∠DFE=2,∵BC=4,∴DF=EF=2,∴EG=1,∴△DEF面積1.
考點(diǎn):1.直角三角形斜邊上的中線;2.等腰三角形的判定與性質(zhì);3.三角形內(nèi)角和定理;4.含30度角的直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com