【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D,E,AD與BE相交于點F.
(1)求證:△ACD∽△BFD;
(2)若AC=BF,求∠ABD的度數.
【答案】(1)證明見解析(2)45°
【解析】試題分析:(1)根據同角的余角相等證得∠DAC=∠FBD,再由∠BDF=∠ADC=90°,根據兩角對應相等的兩個三角形相似即可得△ACD∽△BFD;(2)由(1)和AC=BF,可判定△ACD≌△BFD,根據全等三角形的性質可得DA=DB,又由AD⊥BC,即可得∠ABD=45°.
試題解析:
(1)證明:∵AD⊥BC,BE⊥AC,
∴∠DAC+∠C=90°,∠FBD+∠C=90°,
∴∠DAC=∠FBD,又∠BDF=∠ADC=90°,
∴△ACD∽△BFD;
(2)解:∵△ACD∽△BFD,AC=BF,
∴△ACD≌△BFD,
∴DA=DB,又AD⊥BC,
∴∠ABD=45°.
科目:初中數學 來源: 題型:
【題目】肥西素有“淮軍故里、改革首縣、花木之鄉(xiāng)”之美譽,現就肥西以下五個旅游景點進行調查,A.“官亭林海”,B.“三河古鎮(zhèn)”,C.“紫蓬山國家森林公園”,D.“小井莊”,E.“劉銘傳故居”,為了解學生最喜歡哪一個景點(每人只選取一種),隨機抽取了部分學生進行調查,將調查結果繪制成如下不完整的統計表和統計圖.根據以上信息解答下列問題:
(1)本次接受調查的總人數為______人,統計表中m=______,n=______.
(2)補全條形統計圖.
(3)若把條形統計圖改為扇形統計圖,則景點“紫蓬山國家森林公園”、“小井莊”、“劉銘傳故居”所在扇形的圓心角度數分別是__________、___________、___________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2016廣西桂林市)已知任意三角形的三邊長,如何求三角形面積?
古希臘的幾何學家海倫解決了這個問題,在他的著作《度量論》一書中給出了計算公式﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長,p=,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:
∵a=3,b=4,c=5,∴p==6,∴S===6.
事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數學家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9
(1)用海倫公式求△ABC的面積;
(2)求△ABC的內切圓半徑r.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】A、B兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中表示兩人離A地的距離S(km)與時間t(h)的關系,結合圖像回答下列問題:
(1)表示乙離開A地的距離與時間關系的圖像是________(填);
甲的速度是__________km/h;乙的速度是________km/h。
(2)甲出發(fā)后多少時間兩人恰好相距5km?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=﹣x2+2bx﹣3的對稱軸為直線x=2.
(1)求b的值;
(2)在y軸上有一動點P(0,m),過點P作垂直y軸的直線交拋物線于點A(x1,y1),B(x2,y2),其中x1<x2.
①當x2﹣x1=3時,結合函數圖象,求出m的值;
②把直線PB下方的函數圖象,沿直線PB向上翻折,圖象的其余部分保持不變,得到一個新的圖象W,新圖象W在0≤x≤5時,﹣4≤y≤4,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B、C重合),以AD為邊在AD的右側作正方形ADEF,連接CF.
(1)觀察猜想:如圖(1),當點D在線段BC上時,
①BC與CF的位置關系是: ;
②BC、CD、CF之間的數量關系為: (將結論直接寫在橫線上)
(2)數學思考:如圖(2),當點D在線段CB的延長線上時,上述①、②中的結論是否仍然成立?若成立,請給予證明,若不成立,請你寫出正確結論再給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】操作探究:已知在紙面上有一數軸(如圖所示).
左右折疊紙面,折痕所在的直線與數軸的交點為“對折中心點”
操作一:
(1)左右折疊紙面,使1表示的點與-1表示的點重合,則-3表示的點與 表示的點重合;
操作二:
(2)左右折疊紙面,使-1表示的點與3表示的點重合,回答以下問題:
①對折中心點所表示的數為 ,對折后5表示的點與數 表示的點重合;
②若數軸上A.B兩點之間距離為11(A在B的左側),且A.B兩點經折疊后重合,求A.B兩點表示的數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,CD是弦,且ABCD于點E。連接AC、OC、BC。
(1)求證: ACO=BCD。
(2)若EB=,CD=,求⊙O的直徑。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊的中點,分別過點B、C作射線AD的垂線,垂足分別為E、F,連接BF、CE.
(1)求證:四邊形BECF是平行四邊形;
(2)若AF=FD,在不添加輔助線的條件下,直接寫出與△ABD面積相等的所有三角形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com