在△ABC中,D、E分別是邊AB、AC的中點,若BC=5,則DE的長是( )
A.2.5
B.5
C.10
D.15
【答案】分析:由D、E分別是邊AB、AC的中點可知,DE是△ABC的中位線,根據(jù)中位線定理可知,DE=BC=2.5.
解答:解:根據(jù)題意畫出圖形如圖示,
∵D、E分別是邊AB、AC的中點,
∴DE是△ABC的中位線,
∴DE=AB,
∵BC=5,
∴DE=BC=2.5.
故選A.
點評:本題考查了中位線的性質,三角形的中位線是指連接三角形兩邊中點的線段,中位線的特征是平行于第三邊且等于第三邊的一半.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點F.DF與EF相等嗎?證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點D,交AC于點E、已知△ABC中與△ABD的周長分別為18cm和12cm,則線段AE的長等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長為( 。
A、
2
B、
3
C、2
D、以上都不對

查看答案和解析>>

同步練習冊答案