如圖,半圓O的直徑AB=4,⊙O1與半圓O內(nèi)切且與AB切于點C,設(shè)⊙O1的半徑為y,AC=x,
(1)請求出y關(guān)于x的函數(shù)關(guān)系式以及自變量x的取值范圍;
(2)求出函數(shù)的最大值,并在所給平面直角坐標中畫出函數(shù)的大致圖象.

解:(1)連接OO1,連接O1C,
∴圓O1與半圓O內(nèi)切,半圓O的半徑為2,圓O1的半徑為y,
∴OO1=2﹣y,又半圓O與AB切于點C,
O1C⊥OA,O1C=y,又AC=x,則OC=OA﹣AC=2﹣x,
在直角三角形O1OC中,根據(jù)勾股定理得:OO12=O1C2+OC2
即(2﹣y)2=y2+(2﹣x)2,則y=﹣x2+x(0<x<4);
(2)二次函數(shù)y=﹣x2+x,當x=﹣=﹣=2時,
ymax=﹣×22+2=1,令y=0,得到﹣x2+x=0,
解得:x=0或x=4,∴拋物線與x軸交于(0,0)及(4,0),
對稱軸為直線x=2,作出二次函數(shù)的圖象,如圖所示.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,半圓O的直徑AD=12cm,AB,BC,CD分別與半圓O切于點A,E,D.
(1)設(shè)AB=x,CD=y,求y與x之間的函數(shù)關(guān)系式;
(2)如果CD=6,判斷四邊形ABCD的形狀;
(3)如果AB=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,半圓O的直徑AD=12cm,AB、BC、CD分別與半圓O切于點A、E、D.
(1)線段AB、CD與BC之間有什么關(guān)系?并說明理由;
(2)設(shè)AB=x,CD=y,求y與x之間的函數(shù)關(guān)系式;
(3)如果AB=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,半圓O的直徑AB=12cm,射線BM從與線段AB重合的位置起,以每秒6°的旋轉(zhuǎn)速度繞B點按順時針方向旋轉(zhuǎn)至BP的位置,BP交半圓于E,設(shè)旋轉(zhuǎn)時間為ts(0<t<15),
(1)求E點在圓弧上的運動速度(即每秒走過的弧長),結(jié)果保留π.
(2)設(shè)點C始終為
AE
的中點,過C作CD⊥AB于D,AE交CD、CB分別于G、F,過F作F精英家教網(wǎng)N∥CD,過C作圓的切線交FN于N.
求證:①CN∥AE;
②四邊形CGFN為菱形;
③是否存在這樣的t值,使BE2=CF•CB?若存在,求t值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,半圓O的直徑為6cm,∠BAC=30°,則陰影部分的面積是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,半圓O的直徑AB=20,將半圓O繞點B順針旋轉(zhuǎn)45°得到半圓O′,與AB交于點P.
(1)求AP的長.
(2)求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

同步練習冊答案