【題目】太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準(zhǔn)備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點(diǎn)D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結(jié)果精確到0.1米) (參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

【答案】解:∵∠BDC=90°,BC=10,sinB= , ∴CD=BCsinB=10×0.59=5.9,
∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,
∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,
∴在Rt△ACD中,tan∠ACD= ,
∴AD=CDtan∠ACD=5.9×0.32=1.888≈1.9(米),
則改建后南屋面邊沿增加部分AD的長約為1.9米.
【解析】在直角三角形BCD中,由BC與sinB的值,利用銳角三角函數(shù)定義求出CD的長,在直角三角形ACD中,由∠ACD度數(shù),以及CD的長,利用銳角三角函數(shù)定義求出AD的長即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求證:角平分線上的點(diǎn)到這個角的兩邊距離相等. 已知:
求證:
證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB∥CD,AB=CD=15,AC平分∠BAD,AC與BD交于點(diǎn)O,將△ABD繞點(diǎn)D順時針方向旋轉(zhuǎn),得到△EFD,旋轉(zhuǎn)角為α(0°<α<180°)點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)E,點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)F

(1)求證:四邊形形ABCD是菱形
(2)若∠BAD=30°,DE邊為與AB邊相交于點(diǎn)M,當(dāng)點(diǎn)F恰好落在AC上時,求證:MD=ME
(3)若△ABD的周長是48,EF邊與BC邊交于點(diǎn)N,DF邊與BC邊交于點(diǎn)P,在旋轉(zhuǎn)的過程中,當(dāng)△FNP是直角三角形是,△FNP的面積是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=30°,點(diǎn)M,N分別在邊OA,OB上,OM= ,ON=3 ,點(diǎn)P,Q分別在邊OB,OA上運(yùn)動,連接MP,PQ,QN,則MP+PQ+QN的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= 的圖象在二四象限,一次函數(shù)為y=kx+b(b>0),直線x=1與x軸交于點(diǎn)B,與直線y=kx+b交于點(diǎn)A,直線x=3與x軸交于點(diǎn)C,與直線y=kx+b交于點(diǎn)D.
(1)若點(diǎn)A,D都在第一象限,求證:b>﹣3k;
(2)在(1)的條件下,設(shè)直線y=kx+b與x軸交于點(diǎn)E與y軸交于點(diǎn)F,當(dāng) = 且△OFE的面積等于 時,求這個一次函數(shù)的解析式,并直接寫出不等式 >kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C為△ABD的外接圓上的一動點(diǎn)(點(diǎn)C不在 上,且不與點(diǎn)B,D重合),∠ACB=∠ABD=45°
(1)求證:BD是該外接圓的直徑;
(2)連結(jié)CD,求證: AC=BC+CD;
(3)若△ABC關(guān)于直線AB的對稱圖形為△ABM,連接DM,試探究DM2 , AM2 , BM2三者之間滿足的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D,E分別是△ABC的邊AB,AC上的中點(diǎn),如果△ADE的周長是6,則△ABC的周長是(
A.6
B.12
C.18
D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點(diǎn)O在AB上,經(jīng)過點(diǎn)A的⊙O與BC相切于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,雙曲線y= 經(jīng)過ABCD的頂點(diǎn)B,D.點(diǎn)D的坐標(biāo)為(2,1),點(diǎn)A在y軸上,且AD∥x軸,SABCD=5.
(1)填空:點(diǎn)A的坐標(biāo)為;
(2)求雙曲線和AB所在直線的解析式.

查看答案和解析>>

同步練習(xí)冊答案