【題目】圖1,圖2是兩張形狀、大小完全相同的6×6方格紙,方格紙中的每個小長方形的邊長為1,所求的圖形各頂點也在格點上.
(1)在圖1中畫一個以點,為頂點的菱形(不是正方形),并求菱形周長;
(2)在圖2中畫一個以點為所畫的平行四邊形對角線交點,且面積為6,求此平行四邊形周長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點,拋物線上另有一點C在x軸下方,且使△OCA∽△OBC.
(1)求線段OC的長度;
(2)設直線BC與y軸交于點M,點C是BM的中點時,求直線BM和拋物線的解析式;
(3)在(2)的條件下,直線BC下方拋物線上是否存在一點P,使得四邊形ABPC面積最大?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB = AC,AB的垂直平分線DE交AC于D,交AB于E.
(1)若AB = AC = 8cm,BC = 6cm,求△BCD的周長;
(2)若∠CBD = 30°,試求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解某個年級的學習情況,在這個年級抽取了50名學生,對某學科進行測試,將所得成績(成績均為整數(shù))整理后,列出表格:
分組 | 50~59分 | 60~69分 | 70~79分 | 80~89分 | 90~99分 |
頻率 | 0.04 | 0.04 | 0.16 | 0.34 | 0.42 |
(1)本次測試90分以上的人數(shù)有________人;(包括90分)
(2)本次測試這50名學生成績的及格率是________;(60分以上為及格,包括60分)
(3)這個年級此學科的學習情況如何?請在下列三個選項中,選一個填在題后的橫線上________.
A.好 B.一般 C.不好
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,函數(shù)的圖象與直線交于點A(3,m).
(1)求k、m的值;
(2)已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù) 的圖象于點N.
①當n=1時,判斷線段PM與PN的數(shù)量關系,并說明理由;
②若PN≥PM,結合函數(shù)的圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點B順時針旋轉角α(0°<α<90°)得△A1BC1,A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.
(1)如圖1,觀察并猜想,在旋轉過程中,線段BE與BF有怎樣的數(shù)量關系?并證明你的結論;
(2)如圖2,當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,∠A=60°,AB=10cm,若點M 從點 B 出發(fā)以 2cm/s 的速度向點 A 運動,點 N 從點 A 出發(fā)以 1cm/s 的速度向點 C 運動,設 M、N 分別從點 B、A 同時出發(fā),運動的時間為 ts.
(1)用含 t 的式子表示線段 AM、AN 的長;
(2)當 t 為何值時,△AMN 是以 MN 為底邊的等腰三角形?
(3)當 t 為何值時,MN∥BC?并求出此時 CN 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分別是AC,AB,BC的中點.點P從點D出發(fā)沿折線DE-EF-FC-CD以每秒7個單位長的速度勻速運動;點Q從點B出發(fā)沿BA方向以每秒4個單位長的速度勻速運動,過點Q作射線QK⊥AB,交折線BC-CA于點G.點P,Q同時出發(fā),當點P繞行一周回到點D時停止運動,點Q也隨之停止.設點P,Q運動的時間是t秒(t>0).
(1)D,F兩點間的距離是 ;
(2)射線QK能否把四邊形CDEF分成面積相等的兩部分?若能,求出t的值.若不能,說明理由;
(3)當點P運動到折線EF-FC上,且點P又恰好落在射線QK上時,求t的值;
(4)連結PG,當PG∥AB時,請直接寫出t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com