【題目】對于一元二次方程,有下列說法:
①若,則方程必有一個(gè)根為1;
②若方程有兩個(gè)不相等的實(shí)根,則方程必有兩個(gè)不相等的實(shí)根;
③若是方程的一個(gè)根,則一定有成立;
④若是一元二次方程的根,則.
其中正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】A
【解析】
按照方程的解的含義、一元二次方程的實(shí)數(shù)根與判別式的關(guān)系、等式的性質(zhì)、一元二次方程的求根公式等對各選項(xiàng)分別討論,可得答案.
解:①若x=1時(shí),方程ax2+bx+c=0,則a+b+c=0,
∵無法確定a-b+c=0.故①錯(cuò)誤;
②∵方程ax2+c=0有兩個(gè)不相等的實(shí)根,
∴△=0-4ac>0
∴-4ac>0
則方程ax2+bx+c=0的判別式,
△=b2-4ac>0
∴方程ax2+bx+c=0必有兩個(gè)不相等的實(shí)根,故②正確;
③∵c是方程ax2+bx+c=0的一個(gè)根,
則ac2+bc+c=0
∴c(ac+b+1)=0
若c=0,等式仍然成立,
但ac+b+1=0不一定成立,故③錯(cuò)誤;
④若x0是一元二次方程ax2+bx+c=0的根,
則由求根公式可得:
或,
∴或
∴b24ac=(2ax0+b)2,故④錯(cuò)誤.
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,是邊上一點(diǎn),將沿翻折,點(diǎn)恰好落在對角線上的點(diǎn)處,則的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
(a﹣b)(a+b)=a2﹣b2
(a﹣b)(a2+ab+b2)=a3﹣b3
(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…
利用你的發(fā)現(xiàn)的規(guī)律解決下列問題
(1)(a﹣b)(a4+a3b+a2b2+ab3+b4)= (直接填空);
(2)(a﹣b)(an﹣1+an﹣2b+an﹣3b2…+abn﹣2+bn﹣1)= (直接填空);
(3)利用(2)中得出的結(jié)論求62019+62018+…+62+6+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC, AD是△ABC 底邊BC上的中線,P為AB上一點(diǎn).
(1)在AD上找一點(diǎn)E,使得PE+EB的值最。
(2)若P為AB的中點(diǎn),當(dāng)∠BPE= °時(shí),△ABC是等邊三角形.(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在AB上,E在BC上,且AD=BE,BD=AC.
(1)如圖1,求證:DC=DE;
(2)如圖2,過E作EF⊥AB于F,若BF=2,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】世界上大部分國家都使用攝氏溫度(),但美國、英國等國家的天氣預(yù)報(bào)仍然使用華氏溫度().兩種計(jì)量之間有如下對應(yīng):
攝氏溫度() | ||||||
華氏溫度() |
(1)上表反映了哪兩變量之間的關(guān)系?哪個(gè)是自變量?哪個(gè)是因變量?
(2)由上表可得:攝氏溫度()每提高度,華氏溫度()提高_____度.
(3)攝氏溫度度時(shí)華氏溫度為______度.
(4)華氏溫度度時(shí)攝氏溫度為_______度.
(5)華氏溫度的值與對應(yīng)的攝氏溫度的值有相等的可能嗎?如果有,求出這個(gè)值.如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ΔABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,則∠DEF的度數(shù)是( 。
A.75°B.70°C.65°D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,連接BD,且BD=CD,過點(diǎn)A作AM⊥BD于點(diǎn)M,過點(diǎn)D作DN⊥AB于點(diǎn)N,且DN=,在DB的延長線上取一點(diǎn)P,滿足∠ABD=∠MAP+∠PAB,則AP=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料I:教材中我們學(xué)習(xí)了:若關(guān)于的一元二次方程的兩根為,根據(jù)這一性質(zhì),我們可以求出己知方程關(guān)于的代數(shù)式的值.
問題解決:
(1)已知為方程的兩根,則 , ,那么 .(請你完成以上的填空)
閱讀材料II:已知,且.求的值.
解:由可知
又且,即
是方程的兩根.
問題解決:
(2)已知且.求的值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com