【題目】如圖,△A1B1A2,△A2B2A3,△A3B3A4,…,△AnBnAn+1都是等腰直角三角形,其中點(diǎn)A1、A2、…、An在x軸上,點(diǎn)B1、B2、…、Bn在直線y=x上,已知OA2=1,則OA2015的長為____

【答案】

【解析】

根據(jù)△A1B1A2為等腰直角三角形,所以A1B1OA2,A1B1=A1A2,然后根據(jù)等腰直角三角形斜邊上的高等于斜邊的一半求出A1B1、A1A2,同理求出A2B2,然后根據(jù)變化規(guī)律寫出即可.

因?yàn)椤鰽1B1A2為等腰直角三角形,所以A1B1OA2,A1B1=A1A2,又因?yàn)辄c(diǎn)B1在直線y=x上,所以O(shè)A1= A1B1,故OA1= A1A2,即點(diǎn)為OA2的中點(diǎn),又因?yàn)镺A2=1,所以A1B1=A1A2= 。因?yàn)椤鰽2B2A3為等腰直角三角形,所以A2B2OA2,,所以A1B1∥A1B2,所以A1B1△OA2B2的邊A2B2上的中位線,所以A1B1=A1B2,即A2B2=2 A1B1,同理可證A3B3=2A2B2,同理可證AnBn=2An-1Bn-1,所以AnBn=2An-1Bn-1=2(2An-2Bn-2)==2n-2。當(dāng)n=2014時(shí),

A2014B2014=22014-2,因?yàn)椤鰽2014B2014A2015為等腰直角三角形,所以A2014A2015=A2014B2014=22014-2且A2014B2014OA2015因?yàn)辄c(diǎn)B2014在直線y=x上,所以O(shè)A2014= A2014B2014所以,OA2015=2A2014A2015=222012=22013故本題正確答案為22013。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一居民樓底部B與山腳P位于同一水平線上,小李在P處測得居民樓頂A的仰角為60°,然后他從P處沿坡角為45°的山坡向上走到C處,這時(shí),PC=30 m,點(diǎn)C與點(diǎn)A恰好在同一水平線上,點(diǎn)A、BP、C在同一平面內(nèi).

(1)求居民樓AB的高度;

(2)求C、A之間的距離.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,,平分平分

求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家將一種電視機(jī)按進(jìn)價(jià)提高35%后定價(jià),然后打出九折酬賓,外送50元出租車費(fèi)的廣告,結(jié)果每臺電視機(jī)獲利208元.

1)求每臺電視機(jī)的進(jìn)價(jià);

2)另有一家商家出售同類產(chǎn)品,按進(jìn)價(jià)提高40%,然后打出八折酬賓的廣告,如果你想買這種產(chǎn)品,應(yīng)選擇哪一個(gè)商家?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,點(diǎn)E在邊CD上,連結(jié)AE、BE.給出下列五個(gè)關(guān)系式:①AD∥BC②DE=CE;③∠1=∠2;④∠3=∠4;⑤ADBC=AB.將其中的三個(gè)關(guān)系式作為題設(shè),另外兩個(gè)作為結(jié)論,構(gòu)成一個(gè)命題.

用序號寫出一個(gè)真命題(書寫形式如:如果×××,那么××);并給出證明;

用序號再寫出三個(gè)真命題(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l上有一點(diǎn)P1(2,1),將點(diǎn)P1先向右平移1個(gè)單位,再向上平移2個(gè)單位得到像點(diǎn)P2,點(diǎn)P2恰好在直線l上.

(1)寫出點(diǎn)P2的坐標(biāo);

(2)求直線l所表示的一次函數(shù)的表達(dá)式;

(3)若將點(diǎn)P2先向右平移3個(gè)單位,再向上平移6個(gè)單位得到像點(diǎn)P3.請判斷點(diǎn)P3是否在直線l上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市城市居民用電收費(fèi)方式有以下兩種:

(甲)普通電價(jià):全天0.53元/度;

(乙)峰谷電價(jià):峰時(shí)(早8:00~晚21:00)0.56元/度;谷時(shí)(晚21:00~早8:00)0.36元/度.

估計(jì)小明家下月總用電量為200度,

⑴若其中峰時(shí)電量為50度,則小明家按照哪種方式付電費(fèi)比較合適?能省多少元?

⑵請你幫小明計(jì)算,峰時(shí)電量為多少度時(shí),兩種方式所付的電費(fèi)相等?

⑶到下月付費(fèi)時(shí), 小明發(fā)現(xiàn)那月總用電量為200度,用峰谷電價(jià)付費(fèi)方式比普通電價(jià)付費(fèi)方式省了14元,求那月的峰時(shí)電量為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBC,AD=6BC=16,EBC的中點(diǎn).點(diǎn)P以每秒1個(gè)單位長度的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)D運(yùn)動;點(diǎn)Q同時(shí)以每秒2個(gè)單位長度的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動.點(diǎn)P停止運(yùn)動時(shí),點(diǎn)Q也隨之停止運(yùn)動.當(dāng)運(yùn)動時(shí)間________秒時(shí),以點(diǎn)P,Q,E,D為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABCD,直線分別交,,兩點(diǎn),若,分別是,的角平分線,試說明:MENF

解:∵ABCD,(已知)

,(

,分別是,的角平分線,(已知)

∴∠EMN= AMN,

FNM= DNM,(角平分線的定義)

,(等量代換)

MENF,(

由此我們可以得出一個(gè)結(jié)論:兩條平行線被第三條直線所截,一對 角的平分線互相

查看答案和解析>>

同步練習(xí)冊答案