【題目】如圖 1,在平面直角坐標(biāo)系中,A,B,D 三點的坐標(biāo)是(02),(-2,0),(1,0),點C x 軸下方一點,且 CDAD,BAD+BCD=180°,AD=CD

(1)求證:BD 平分∠ABC

(2)求四邊形 ABCD 的面積

(3)如圖 2,BE 是∠ABO 的鄰補角的平分線,連接 AE,OE AB 于點 F,若∠AEO=45°,求證:AF=AO.

【答案】(1)證明見解析;(2;(3)證明見解析;

【解析】

1)過CDMBDM,根據(jù)AAS判定△CDM≌△DOA,通過線段和差推出BM=MC=1得出∠CBD=45°進而得到∠CBD=ABO=45°即可證BD 平分∠ABC;

2)將,再根據(jù)三角形的面積公式計算即可;
3)過點E作作EHx軸于點HEGBC于點G,根據(jù)角平分線的性質(zhì)得到EH=EG,證明△EAG≌△EOH,得到EA=EO,根據(jù)等腰三角形的判定定理解答.

證明:(1)∵A(0,2)B(-2,0)D(1,0)
OA=OB=2,OD=1

∴∠ABO=BAO=45°
CDMBDM
∴∠CMD=90°
∴∠1+3=90°
CDAD
∴∠ADC=90°
∴∠1+2=90°
∴∠2=3

又∵CD=AD,∠CMD=AOD =90°

∴△CDM≌△DOA
CM=OD=1MD=AO=2

OM=1

BM=1

BM=MC=1

∴∠CBD=45°

∴∠CBD=ABO=45°

BD 平分∠ABC

(2)由(1)得A(0,2),B(-2,0),C(-1,-1),M(-1,0)

BD=3,AO=2,CM=1

(3)過點EEHx軸于點H,EGBA于點G

∴∠EHO=EGA =90°

E點在∠ABO的鄰補角的平分線上,EHHOEGBA

EH=EG,

∵∠ABO=AEO=45

∴∠EAG=EOH,

在△EAGEOH中,

∴△EAG≌△EOH(AAS),

EA=EO,

∵∠AEO=45°,

∴∠EAO=EOA=67.5°,

∵∠OAB=45°,

∴∠AFO=180°-OAB-AOE=67.5°

∴∠AOE=AFO=67.5°,

AF=AO

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線軸交于點,直線經(jīng)過點, A點相交所形的 夾角為45°(如圖所示),則直線的函數(shù)表達式為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下面直角坐標(biāo)系中,已知,,三點,其中、、滿足關(guān)系式,.

1)求、的值;

2)如果在第二象限內(nèi)有一點,請用含的式子表示四邊形的面積;

3)在(2)的條件下,是否存在點,使四邊形的面積與的面積相等?若存在,求出點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Aa0),Bb0),C(﹣1,2),且|a+2|+b420

1)求a,b的值;

2)在y軸上是否存在一點M,使△COM的面積=ABC的面積,求出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC 中,點 D,E 分別在∠ABC 和∠ACB 的平分線上,連接 BD,DE,EC,若∠D+E=295°, 則∠A 是(

A.65°B.60°C.55°D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解本校八年級學(xué)生數(shù)學(xué)學(xué)習(xí)情況,隨機抽查該年級若干名學(xué)生進行測試,然后把測試結(jié)果分為4個等級:AB、C、D,并將統(tǒng)計結(jié)果繪制成兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息解答下列問題

1)補全條形統(tǒng)計圖

2)等級為D等的所在扇形的圓心角是   

3)如果八年級共有學(xué)生1800名,請你估算我校學(xué)生中數(shù)學(xué)學(xué)習(xí)A等和B等共多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MNAD相交于點M,與BD相交于點O,與BC相交于點N,連接BMDN

求證:四邊形BMDN是菱形;

,求菱形BMDN的面積和對角線MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,∠ACB90°,CDABD,∠BAC的平分線分別交BC,CDE、F

1)試說明△CEF是等腰三角形.

2)若點E恰好在線段AB的垂直平分線上,試說明線段AC與線段AB之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點A,B,與軸交于點C。過點CCDx軸,交拋物線的對稱軸于點D,連結(jié)BD。已知點A坐標(biāo)為(-10)。

1)求該拋物線的解析式;

2)求梯形COBD的面積。

查看答案和解析>>

同步練習(xí)冊答案