【題目】如圖,△ABC內接于⊙O,BD為⊙O的直徑,BD與AC相交于點H,AC的延長線與過點B的直線相交于點E,且∠A=∠EBC.
(1)求證:BE是⊙O的切線;
(2)已知CG∥EB,且CG與BD、BA分別相交于點F、G,若BGBA=48,FG= ,DF=2BF,求AH的值.
【答案】
(1)
證明:連接CD,
∵BD是直徑,
∴∠BCD=90°,即∠D+∠CBD=90°,
∵∠A=∠D,∠A=∠EBC,
∴∠CBD+∠EBC=90°,
∴BE⊥BD,
∴BE是⊙O切線.
(2)
解:∵CG∥EB,
∴∠BCG=∠EBC,
∴∠A=∠BCG,
∵∠CBG=∠ABC
∴△ABC∽△CBG,
∴ ,即BC2=BGBA=48,
∴BC=4 ,
∵CG∥EB,
∴CF⊥BD,
∴△BFC∽△BCD,
∴BC2=BFBD,
∵DF=2BF,
∴BF=4,
在RT△BCF中,CF= =4 ,
∴CG=CF+FG=5 ,
在RT△BFG中,BG= =3 ,
∵BGBA=48,
∴ 即AG=5 ,
∴CG=AG,
∴∠A=∠ACG=∠BCG,∠CFH=∠CFB=90°,
∴∠CHF=∠CBF,
∴CH=CB=4 ,
∵△ABC∽△CBG,
∴ ,
∴AC= ,
∴AH=AC﹣CH= .
【解析】(1)欲證明BE是⊙O的切線,只要證明∠EBD=90°.
。2)由△ABC∽△CBG,得 = 求出BC,再由△BFC∽△BCD,得BC2=BFBD求出BF,CF,CG,GB,再通過計算發(fā)現CG=AG,進而可以證明CH=CB,求出AC即可解決問題.本題考查切線的判定、圓的有關知識、相似三角形的判定和性質、勾股定理.等腰三角形的判定和性質等知識,解題的關鍵是巧妙利用相似三角形的性質解決問題,屬于中考壓軸題.
科目:初中數學 來源: 題型:
【題目】如圖,已知AB=CB,BE=BF,點A,B,C在同一條直線上,∠1=∠2.
(1)證明:△ABE≌△CBF;
(2)若∠FBE=40°,∠C=45°,求∠E的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動圓圓心Q從點O出發(fā),沿著OA方向以1個單位長度/秒的速度勻速運動,同時動點P從點A出發(fā),沿著AB方向也以1個單位長度/秒的速度勻速運動,設運動時間為t秒(0<t≤5)以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點分別為C、D,連結CD、QC.
(1)當t為何值時,點Q與點D重合?
(2)當⊙Q經過點A時,求⊙P被OB截得的弦長.
(3)若⊙P與線段QC只有一個公共點,求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下列數表
根據數表反映的規(guī)律,猜想第6行與第6列的交叉點上的數應為多少.
(1)第n行與第n列的交叉點上的數應為多少.(用含正整數n的式子表示)
(2)計算左上角2×2的正方形里所有數字之和,即: 在數表中任取幾個2×2的正方形,計算其中所有數字之和,歸納你得出的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次函數y=﹣x+1的圖象與x軸、y軸分別交于點A、B,以AB為邊在第一象限內做等邊△ABC
(1)求△ABC的面積和點C的坐標;
(2)如果在第二象限內有一點P(a,),試用含a的代數式表示四邊形ABPO的面積.
(3)在x軸上是否存在點M,使△MAB為等腰三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是一塊綠化帶,將陰影部分修建為花圃,已知AB=15,AC=9,BC=12,陰影部分是△ABC的內切圓,一只自由飛翔的小鳥將隨機落在這塊綠化帶上,則小鳥落在花圃上的概率為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小芳在本學期的體育測試中,1分鐘跳繩獲得了滿分,她的“滿分秘籍”如下:前20秒由于體力好,小芳速度均勻增加,20秒至50秒保持跳繩速度不變,后10秒進行沖刺,速度再次均勻增加,最終獲得滿分,反映小芳1分鐘內跳繩速度y(個/秒)與時間t(秒)關系的函數圖象大致為( 。
A. A B. B C. C D. D
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com