【題目】如圖1,在△ABC中,設∠A、∠B、∠C的對邊分別為a,b,c,過點A作AD⊥BC,垂足為D,會有sin∠C= ,則
S△ABC= BC×AD= ×BC×ACsin∠C= absin∠C,
即S△ABC= absin∠C
同理S△ABC= bcsin∠A
S△ABC= acsin∠B
通過推理還可以得到另一個表達三角形邊角關系的定理﹣余弦定理:
如圖2,在△ABC中,若∠A、∠B、∠C的對邊分別為a,b,c,則
a2=b2+c2﹣2bccos∠A
b2=a2+c2﹣2accos∠B
c2=a2+b2﹣2abcos∠C
用上面的三角形面積公式和余弦定理解決問題:
(1)如圖3,在△DEF中,∠F=60°,∠D、∠E的對邊分別是3和8.求S△DEF和DE2 .
解:S△DEF= EF×DFsin∠F=;
DE2=EF2+DF2﹣2EF×DFcos∠F= .
(2)如圖4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分別是以AB、BC、AC為邊長的等邊三角形,設△ABC、△ABC'、△BCA'、△ACB'的面積分別為S1、S2、S3、S4 , 求證:S1+S2=S3+S4 .
【答案】
(1)6 ;49
(2)
證明:方法1,∵∠ACB=60°,
∴AB2=AC2+BC2﹣2ACBCcos60°=AC2+BC2﹣ACBC,
兩邊同時乘以 sin60°得, AB2sin60°= AC2sin60°+ BC2sin60°﹣ ACBCsin60°,
∵△ABC',△BCA',△ACB'是等邊三角形,
∴S1= ACBCsin60°,S2= AB2sin60°,S3= BC2sin60°,S4= AC2sin60°,
∴S2=S4+S3﹣S1,
∴S1+S2=S3+S4,
方法2、令∠A,∠B,∠C的對邊分別為a,b,c,
∴S1= absin∠C= absin60°= ab
∵△ABC',△BCA',△ACB'是等邊三角形,
∴S2= ccsin60°= c2,S3= aasin60°= a2,S4= bbsin60°= b2,
∴S1+S2= (ab+c2),S3+S4= (a2+b2),
∵c2=a2+b2﹣2abcos∠C=a2+b2﹣2abcos60°,
∴a2+b
∴S1+S2=S3+S4
【解析】解:(1)在△DEF中,∠F=60°,∠D、∠E的對邊分別是3和8,
∴EF=3,DF=8,
∴S△DEF= EF×DFsin∠F= ×3×8×sin60°=6 ,
DE2=EF2+DF2﹣2EF×DFcos∠F=32+82﹣2×3×8×cos60°=49,
所以答案是:6 ,49;
【考點精析】掌握同角三角函數(shù)的關系(倒數(shù)、平方和商)是解答本題的根本,需要知道各銳角三角函數(shù)之間的關系:平方關系(sin2A+cos2A=1);倒數(shù)關系(tanAtan(90°—A)=1);弦切關系(tanA=sinA/cosA ).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點O,且AC⊥BD,點E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,依次連接各邊中點得到四邊形EFGH,求證:四邊形EFGH是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉辦了一次成語知識競賽,滿分10分,學生得分均為整數(shù),成績達到6分及6分以上為合格,達到9分或10分為優(yōu)秀,這次競賽中,甲、乙兩組學生成績分布的折線統(tǒng)計圖和成績統(tǒng)計分析表如圖所示.
(1)求出下列成績統(tǒng)計分析表中a,b的值:
組別 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
甲組 | 6.8 | a | 3.76 | 90% | 30% |
乙組 | b | 7.5 | 1.96 | 80% | 20% |
(2)小英同學說:“這次競賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上面表格判斷,小英是甲、乙哪個組的學生;
(3)甲組同學說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組.但乙組同學不同意甲組同學的說法,認為他們組的成績要好于甲組.請你寫出兩條支持乙組同學觀點的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了增強中學生的體質,某校食堂每天都為學生提供一定數(shù)量的水果,學校李老師為了了解學生喜歡吃哪種水果,進行了抽樣調查,調查分為五種類型:A喜歡吃蘋果的學生;B喜歡吃桔子的學生;C.喜歡吃梨的學生;D.喜歡吃香蕉的學生;E喜歡吃西瓜的學生,并將調查結果繪制成圖1和圖2 的統(tǒng)計圖(不完整).請根據(jù)圖中提供的數(shù)據(jù)解答下列問題:
(1)求此次抽查的學生人數(shù);
(2)將圖2補充完整,并求圖1中的x;
(3)現(xiàn)有5名學生,其中A類型3名,B類型2名,從中任選2名學生參加體能測試,求這兩名學生為同一類型的概率(用列表法或樹狀圖法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,點P是AB邊上的一個動點,連接CP,過點P作PC的垂線交AD于點E,以 PE為邊作正方形PEFG,頂點G在線段PC上,對角線EG、PF相交于點O.
(1)若AP=1,則AE=;
(2)①求證:點O一定在△APE的外接圓上; ②當點P從點A運動到點B時,點O也隨之運動,求點O經過的路徑長;
(3)在點P從點A到點B的運動過程中,△APE的外接圓的圓心也隨之運動,求該圓心到AB邊的距離的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知常數(shù)p>0,數(shù)列{an}滿足an+1=|p﹣an|+2an+p,n∈N*.
(1)若a1=﹣1,p=1, ①求a4的值;
②求數(shù)列{an}的前n項和Sn;
(2)若數(shù)列{an}中存在三項ar , as , at(r,s,t∈N*,r<s<t)依次成等差數(shù)列,求 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E為DC邊上的點,連接BE,將△BCE繞點C順時針方向旋轉90°得到△DCF,連接EF,若∠BEC=60°,則∠EFD的度數(shù)為( )
A.10°
B.15°
C.20°
D.25°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com