【題目】用一個(gè)平面去截球,截面是________.

【答案】

【解析】

截面:用一個(gè)平面去截一個(gè)幾何體,截出的面叫做截面.依此即可求解.

用一個(gè)平面去截一個(gè)球,截面是圓.

故答案為:圓.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】①如圖1,AB∥CD,則∠A +∠E +∠C=180°;②如圖2,AB∥CD,則∠E =∠A +∠C;③如圖3,AB∥CD,則∠A +∠E-∠1=180° ; ④如圖4,AB∥CD,則∠A=∠C +∠P.以上結(jié)論正確的個(gè)數(shù)是( )

A. 、1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,B,C兩點(diǎn)把線段AD分成2:5:3三部分,MAD的中點(diǎn),BM=6cm,求CMAD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)Pa,b),若點(diǎn)P的坐標(biāo)為(akb,kab)(其中k為常數(shù),且k≠0),則稱點(diǎn)P為點(diǎn)Pk屬派生點(diǎn)

例如:P1,4)的“2屬派生點(diǎn)P12×4,2×14),即P9,6).

1)點(diǎn)P(-1,6)的“2屬派生點(diǎn)P的坐標(biāo)為_____________

2)若點(diǎn)P“3屬派生點(diǎn)P的坐標(biāo)為(6,2),則點(diǎn)P的坐標(biāo)___________;

3)若點(diǎn)Px軸的正半軸上,點(diǎn)Pk屬派生點(diǎn)P點(diǎn),且線段PP的長(zhǎng)度為線段OP長(zhǎng)度的2倍,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.求:∠DCE∠DCA的度數(shù)

請(qǐng)將以下解答補(bǔ)充完整,

解:因?yàn)?/span>∠DAB+∠D=180°

所以DC∥AB__________

所以∠DCE=∠B__________

又因?yàn)?/span>∠B=95°,

所以∠DCE=________°;

因?yàn)?/span>AC平分∠DAB,∠CAD=25°,根據(jù)角平分線定義,

所以∠CAB=________=________°,

因?yàn)?/span>DC∥AB

所以∠DCA=∠CAB,__________

所以∠DCA=________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)今年8月的產(chǎn)值為a萬(wàn)元, 9月份比8月份增加了10%,10月份比9月份增加了15%,則10月份的產(chǎn)值是(

A.a(1 10%)(1 15%)萬(wàn)元B.(a 10%)(a 15%)萬(wàn)元

C.a(1 90%)(1 85%)萬(wàn)元D.a(1 10% 15%)萬(wàn)元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:隨著人們認(rèn)識(shí)的不斷深入,畢達(dá)哥拉斯學(xué)派逐漸承認(rèn)不是有理數(shù),并給出了證明.假設(shè)是有理數(shù),那么存在兩個(gè)互質(zhì)的正整數(shù)p,q,使得,于是,兩邊平方得p2=2q2 因?yàn)?/span>2q2是偶數(shù),所以p2是偶數(shù),而只有偶數(shù)的平方才是偶數(shù),所以p也是偶數(shù).因此可設(shè)p=2s,代入上式,得4s2=2q2 , q2=2s2 , 所以q也是偶數(shù),這樣,pq都是偶數(shù),不互質(zhì),這與假設(shè)p,q互質(zhì)矛盾,這個(gè)矛盾說(shuō)明, 不能寫成分?jǐn)?shù)的形式,即不是有理數(shù).請(qǐng)你有類似的方法,證明不是有理數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形中,∠BAD的平分線交E點(diǎn)上,且,連接

(1) 判斷四邊形的形狀并證明;

(2) 若相交于點(diǎn),且四邊形的周長(zhǎng)為, ,求的長(zhǎng)度及四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校計(jì)劃用104 000元購(gòu)置一批電腦(這批款項(xiàng)須恰好用完,不得剩余或追加).經(jīng)過(guò)招標(biāo),其中平板電腦每臺(tái)1600元,臺(tái)式電腦每臺(tái)4000元,筆記本電腦每臺(tái)4600元.

(1)若學(xué)校同時(shí)購(gòu)進(jìn)其中兩種不同類型的電腦共50臺(tái),請(qǐng)你幫學(xué)校設(shè)計(jì)該如何購(gòu)買;

(2)若學(xué)校同時(shí)購(gòu)進(jìn)三種不同類型的電腦共26臺(tái)(三種類型的電腦都有),并且要求筆記本電腦的購(gòu)買量不少于15臺(tái).

查看答案和解析>>

同步練習(xí)冊(cè)答案