精英家教網 > 初中數學 > 題目詳情

【題目】農夫將蘋果樹種在正方形的果園內,為了保護蘋果樹不受風吹,他在蘋果樹的周圍種上針葉樹.在下圖里,你可以看到農夫所種植蘋果樹的列數(n)和蘋果樹數量及針葉樹數量的規(guī)律:當n為某一個數值時,蘋果樹數量會等于針葉樹數量,則n(  )

A. 6 B. 8 C. 12 D. 16

【答案】B

【解析】1個圖形中蘋果樹的棵樹是1,針葉樹的棵樹是8,

2個圖形中蘋果樹的棵樹是4=22,針葉樹的棵樹是16=8×2,

3個圖形中蘋果樹的棵樹是9=32,針葉樹的棵樹是24=8×3,

4個圖形中蘋果樹的棵樹是16=42,針葉樹的棵樹是32=8×4,

…,

所以,第n個圖形中蘋果樹的棵樹是n2針葉樹的棵樹是8n,

蘋果樹的棵數與針葉樹的棵數相等,

n2=8n,

解得n1=0(舍去),n2=8.

故選B.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D處.若AB=3,AD=4,則ED的長為(  )

A. B. 3 C. 1 D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將邊長為1cm的等邊三角形ABC沿直線l向右翻動(不滑動),點B從開始到結束,所經過路徑的長度為(
A. cm
B.(2+ π)cm
C. cm
D.3cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又余下一個四邊形,稱為第二次操作;……依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準菱形.如圖1,ABCD中,若AB=1,BC=2,則ABCD1階準菱形.

(1)判斷與推理:

①鄰邊長分別為23的平行四邊形是 階準菱形;

②小明為了剪去一個菱形,進行如下操作:如圖2,把ABCD沿BE折疊(點EAD上),使點A落在BC邊上的點F,得到四邊形ABFE.請證明四邊形ABEF是菱形.

(2)操作、探究與計算:

①已知ABCD是鄰邊長分別為1,a(a>1),且是3階準菱形,請畫出ABCD及裁剪線的示意圖,并在圖形下方寫出a的值;

②已知ABCD的鄰邊長分別為a,b(a>b),滿足a=6b+r,b=5r(r>0),則ABCD

階準菱形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O是直線AB上的一點,OC為任一射線,OD平分∠BOC,OE平分∠AOC.

(1)指出圖中∠AOD的補角和∠BOE的補角;

(2)若∠BOC=68°,求∠COD和∠EOC的度數;

(3)COD與∠EOC具有怎樣的數量關系?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為(4,﹣ ),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).

(1)求拋物線的解析式及A、B兩點的坐標;
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,請說明理由;
(3)以AB為直徑的⊙M相切于點E,CE交x軸于點D,求直線CE的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將邊長為 cm的正方形ABCD沿直線l向右翻動(不滑動),當正方形連續(xù)翻動6次后,正方形的中心O經過的路線長是cm.(結果保留π)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以RtABC的斜邊BC為一邊作正方形BCDE設正方形的中心為O,連結AO,如果AB=3,AO,那么AC的長等于__________ .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解某市市民“綠色出行”方式的情況,某校數學興趣小組以問卷調查的形式,隨機調查了某市部分出行市民的主要出行方式(參與問卷調查的市民都只從以下五個種類中選擇一類),并將調查結果繪制成如下不完整的統計圖.

種類

A

B

C

D

E

出行方式

共享單車

步行

公交車

的士

私家車

根據以上信息,回答下列問題:

(1)參與本次問卷調查的市民共有 人,其中選擇B類的人數有 人;

(2)在扇形統計圖中,求A類對應扇形圓心角α的度數,并補全條形統計圖;

(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數.

查看答案和解析>>

同步練習冊答案