【題目】?jī)蓚(gè)全等的直角三角形ABC和DEF重疊在一起,其中∠A=60°,AC=1,固定△ABC不動(dòng),將△DEF進(jìn)行如下操作:
(1)操作發(fā)現(xiàn)
如圖①,△DEF沿線段AB向右平移(即D點(diǎn)在線段AB內(nèi)移動(dòng)),連接DC、CF、FB,四邊形CDBF的形狀在不斷變化,但它的面積不變化,請(qǐng)求出其面積.
(2)猜想論證
如圖②,當(dāng)D點(diǎn)移到AB的中點(diǎn)時(shí),請(qǐng)你猜想四邊形CDBF的形狀,并說明理由.
(3)拓展研究
如圖③,△DEF的D點(diǎn)固定在AB的中點(diǎn),然后繞D點(diǎn)按順時(shí)針方向旋轉(zhuǎn)△DEF,使DF落在AB的邊上,此時(shí)F點(diǎn)恰好與B點(diǎn)重合,連接AE,則sinα= .
【答案】
(1)解:如圖1,∵△DEF沿線段AB向右平移(即D點(diǎn)在線段AB內(nèi)移動(dòng)),
∴CF=AD,AC=DF,
∴四邊形ACFD為平行四邊形,
∴AD∥CF,
∴S△DCF=S△BCF=S△ACD,
∴S四邊形CDBF=S△CDB+S△BCF=S△CDB+S△ACD=S△ACB,
在Rt△ACB中,∵∠A=60°,
∴BC= AC= ,
∴S△ABC= ×1× = ,
∴S四邊形CDBF=
(2)解:四邊形CDBF為菱形.理由如下:
如圖2,∵點(diǎn)D為斜邊AB的中點(diǎn),
∴DC=DA=DB,
∵CF∥AD,CF=AD,
∴CF=BD,CF∥DB,
∴四邊形CDBF為平行四邊形,
而DC=DB,
∴四邊形CDBF為菱形;
(3)
【解析】解:(3)作DH⊥AE于H,如圖,
在Rt△ACB中,∵∠A=60°,
∴AB=2AC=2,
∵點(diǎn)D為AB的中點(diǎn),
∴AD=BD= AB=1,
∵繞D點(diǎn)按順時(shí)針方向旋轉(zhuǎn)△DEF,使DF落在AB邊上,此時(shí)F點(diǎn)恰好與B點(diǎn)重合,
∴∠EFD=90°,EB= ,DE=AB=2,
在Rt△ABE中,AE= = = ,
∵ DHAB= ADEB,
∴DH= = ,
在Rt△EDH中,sinα= = .
所以答案是 .
【考點(diǎn)精析】掌握平移的性質(zhì)和銳角三角函數(shù)的定義是解答本題的根本,需要知道①經(jīng)過平移之后的圖形與原來的圖形的對(duì)應(yīng)線段平行(或在同一直線上)且相等,對(duì)應(yīng)角相等,圖的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對(duì)應(yīng)點(diǎn)所連的線段平行(或在同一直線上)且相等;銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ABC,∠ACB=90°,∠B=2∠A.
(1)用直尺和圓規(guī)作△ABC的角平分線BD,保留作圖痕跡;
(2)在(1)的基礎(chǔ)上,求∠ADB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在東西向的馬路上有一個(gè)巡崗?fù)?/span>A,巡崗員甲從崗?fù)?/span>A出發(fā)以13km/h速度勻速來回巡邏,如果規(guī)定向東巡邏為正,向西巡邏為負(fù),巡邏情況記錄如下:(單位:千米)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
4 | -5 | 3 | -4 | -3 | 6 | -1 |
(1)求第六次結(jié)束時(shí)甲的位置(在崗?fù)?/span>A的東邊還是西邊?距離多遠(yuǎn)?)
(2)在第幾次結(jié)束時(shí)距崗?fù)?/span>A最遠(yuǎn)?距離A多遠(yuǎn)?
(3)巡邏過程中配置無線對(duì)講機(jī),并一直與留守在崗?fù)?/span>A的乙進(jìn)行通話,問在甲巡邏過程中,甲與乙的保持通話時(shí)長(zhǎng)共多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時(shí)出發(fā)勻速相向而行,大樓C位于AB之間,甲與乙相遇在AC中點(diǎn)處,然后兩車立即掉頭,以原速原路返回,直到各自回到出發(fā)點(diǎn).設(shè)甲、乙兩車距大樓C的距離之和為y(千米),甲車離開A地的時(shí)間為t(小時(shí)),y與t的函數(shù)圖象所示,則第21小時(shí)時(shí),甲乙兩車之間的距離為千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,分別以AD、BC為邊向內(nèi)作等邊△ADE和等邊△BCF,連接BE、DF.求證:四邊形BEDF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備從甲乙兩位選手中選擇一位選手代表學(xué)校參加所在地區(qū)的漢字聽寫大賽,學(xué)校對(duì)兩位選手從表達(dá)能力、閱讀理解、綜合素質(zhì)和漢字聽寫四個(gè)方面做了測(cè)試,他們各自的成績(jī)(百分制)如表:
選手 | 表達(dá)能力 | 閱讀理解 | 綜合素質(zhì) | 漢字聽寫 |
甲 | 85 | 78 | 85 | 73 |
乙 | 73 | 80 | 82 | 83 |
(1)由表中成績(jī)已算得甲的平均成績(jī)?yōu)?/span>80.25,請(qǐng)計(jì)算乙的平均成績(jī),從他們的這一成績(jī)看,應(yīng)選派誰;
(2)如果表達(dá)能力、閱讀理解、綜合素質(zhì)和漢字聽寫分別賦予它們2、1、3和4的權(quán),請(qǐng)分別計(jì)算兩名選手的平均成績(jī),從他們的這一成績(jī)看,應(yīng)選派誰.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末小麗從家里出發(fā)騎單車去公園,因?yàn)樗遗c公園之間是一條筆直的自行車道,所以小麗騎得特別放松.途中,她在路邊的便利店挑選一瓶礦泉水,耽誤了一段時(shí)間后繼續(xù)騎行,愉快地到了公園,圖中描述了小麗路上的情景,下列說法中正確的是_______.
①小麗在便利店停留時(shí)間為15分鐘
②公園離小麗家的距離為2000米
③小麗從家到達(dá)公園共用時(shí)間20分鐘
④小麗從家到便利店的平均速度為100米/分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次學(xué)生夏令營(yíng)活動(dòng),有小學(xué)生、初中生、高中生和大學(xué)生參加,共200人,各類學(xué)生人數(shù)比例見扇形統(tǒng)計(jì)圖.
(1)參加這次夏令營(yíng)活動(dòng)的初中生共有多少人?
(2)活動(dòng)組織者號(hào)召參加這次夏令營(yíng)活動(dòng)的所有學(xué)生為貧困學(xué)生捐款.結(jié)果小學(xué)生每人
捐款 5 元,初中生每人捐款 10 元,高中生每人捐款 15 元,大學(xué)生每人捐款 20 元.問平均 每人捐款是多少元?
(3)在(2)的條件下,把每個(gè)學(xué)生的捐款數(shù)額(以元為單位)——記錄下來,則在這組數(shù)據(jù)中,眾數(shù)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com