【題目】如圖所示,甲、乙、丙、丁四個長方形拼成正方形EFGH,中間陰影為正方形.已知甲、乙、丙、丁四個長方形面積的和是32cm2 , 四邊形ABCD的面積是20cm2 , 則甲、乙、丙、丁四個長方形周長的總和為cm.
【答案】48
【解析】解:∵陰影部分的面積=20﹣32÷2=4cm2∴S正方形EFGH=S陰影+S甲乙丙丁的面積和=4+32=36cm2
∴FG=6cm
∴正方形EFGH的周長=24cm
∴甲、乙、丙、丁四個長方形周長的總和=24×2=48cm.
所以答案是48.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識,掌握矩形的四個角都是直角,矩形的對角線相等,以及對正方形的性質(zhì)的理解,了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a2a3=a6
B.(﹣a3)2=﹣a6
C.(﹣3a2)2=6a4
D.(﹣a+b)(a+b)=b2﹣a2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在AC⊥BC,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),且AD=4,過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求CE的長;
(2)當(dāng)D在AB中點(diǎn)時,四邊形BECD是什么特殊四邊形?說明你的理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算(x﹣1)(2x+1)﹣(x2+x﹣2)的結(jié)果,與下列哪一個式子相同( )
A.x2﹣2x﹣3
B.x2﹣2x+1
C.x2+x﹣3
D.x2﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:新京報訊 (記者沙璐攝影彭子洋)5月7日,第五屆北京農(nóng)業(yè)嘉年華圓滿閉幕.歷時58天的會期,共接待游客136.9萬人次,累計實(shí)現(xiàn)總收入3.41億元.其中4月3日的接待量為10.6萬人次,創(chuàng)下了五屆農(nóng)業(yè)嘉年華以來單日游客人數(shù)的最高紀(jì)錄.
本屆北京農(nóng)業(yè)嘉年華共打造了180余個創(chuàng)意景觀,匯集了680余個農(nóng)業(yè)優(yōu)新特品種、130余項先進(jìn)農(nóng)業(yè)技術(shù),開展了210余項娛樂游藝和互動體驗(yàn)活動. 在去年“三館兩園一帶一谷”的基礎(chǔ)上,增設(shè)了“一線”,即京北旅游黃金線,并在草莓博覽園作為主會場的同時,首設(shè)樂多港、延壽兩大分會場.
據(jù)統(tǒng)計,本屆嘉年華期間共有600余家展商參展,設(shè)置了1700處科普展板,近6萬人參與“草莓票香”體驗(yàn)活動,周邊各草莓采摘園接待游客達(dá)267萬人次,銷售草莓265.6萬公斤,實(shí)現(xiàn)收入1.659億元.同時,還有效帶動延壽、興壽、小湯山、崔村、百善、南邵6個鎮(zhèn)的民俗旅游,實(shí)現(xiàn)收入1.09億元,較上屆增長14.84%.
根據(jù)以上材料回答下列問題:
(1)舉辦農(nóng)業(yè)嘉年華以來單日游客人數(shù)的最高紀(jì)錄是;
(2)如右圖,用扇形統(tǒng)計圖表示民俗旅游、銷售草莓及其它方面收入的分布情況,則m=;
(3)選擇統(tǒng)計表或統(tǒng)計圖,將本屆嘉年華的創(chuàng)意景觀、農(nóng)業(yè)優(yōu)新特品種、展商參展、科普展板的數(shù)量表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖矩形ABCD中,AD=5,AB=7,點(diǎn)E為DC上一個動點(diǎn),把△ADE沿AE折疊,當(dāng)點(diǎn)D的對應(yīng)點(diǎn)D′落在∠ABC的角平分線上時,DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張矩形紙片,剪下一個正方形,剩下一個矩形,稱為第一次操作;在剩下的矩形紙片中再剪下一個正方形,剩下一個矩形,稱為第二次操作…若在第 n 次操作后,剩下的矩形為正方形,則稱原矩形為n階奇異矩形.如圖1,矩形ABCD中,若AB=2,BC=6,則稱矩形ABCD為2階奇異矩形.
(1)判斷與操作:
如圖2,矩形ABCD的長為5,寬為2,它是奇異矩形嗎?
如果是,請寫出它是幾階奇異矩形,并在圖中畫出裁剪線;如果不是,請說明理由.
(2)探究與計算:
已知矩形ABCD的一邊長為20,另一邊長為a(a<20),且它是3階奇異矩形,請畫出矩形ABCD及裁剪線的示意圖,并在圖的下方寫出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,各邊相等的五邊形ABCDE中,若∠ABC=2∠DBE,則∠ABC等于 ( )
A.60°
B.120°
C.90°
D.45°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com