【題目】如圖,在AC⊥BC,過點C的直線MN∥AB,D為AB邊上一點,且AD=4,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求CE的長;
(2)當(dāng)D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
【答案】(1)CE的長是4;
(2)當(dāng)D在AB中點時,四邊形BECD是菱形,理由見解析.
【解析】試題分析:(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;
(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據(jù)菱形的判定推出即可.
試題解析:(1)∵DE⊥BC,∴
∵,∴
∴AC∥DE
又∵MN∥AB,
即CE∥AD
∴四邊形ADEC是平行四邊形.
∴CE=AD
∵AD=4
∴CE=4
(2)四邊形BECD是菱形,理由:
∵D為AB中點,
∴AD=BD
又由(1)得CE=AD,
∴BD=CE,
又∵BD∥CE,
∴四邊形BECD是平行四邊形
∵,D為AB中點,
∴CD=BD
∴四邊形BECD是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC為直角,以AB為直徑作⊙O交AC于點D,點E為BC中點,連結(jié)DE,DB.
(1)求證:DE與⊙O相切;
(2)若∠C=30°,求∠BOD的度數(shù);
(3)在(2)的條件下,若⊙O半徑為2, 求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】因式分解與整數(shù)乘法一樣,都是一種恒等變形,即在變形的過程中,形變值不變,于是將多項式x2﹣y2+(2x+2y)分解因式的結(jié)果為( )
A.(x+y)(x﹣y+2)
B.(x+y)(x﹣y﹣2)
C.(x﹣y)(x﹣y+2)
D.(x﹣y)(x﹣y﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強學(xué)生的身體素質(zhì),教育行政部門規(guī)定學(xué)生每天參加戶外活動的平均時間不少于1小時.為了解學(xué)生參加戶外活動的情況,對部分學(xué)生參加戶外活動的時間進行抽樣調(diào)查,并將調(diào)查結(jié)果繪制作成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中共調(diào)查了多少名學(xué)生?
(2)求戶外活動時間為1.5小時的人數(shù),并補充頻數(shù)分布直方圖;
(3)求表示戶外活動時間1小時的扇形圓心角的度數(shù);
(4)本次調(diào)查中學(xué)生參加戶外活動的平均時間是否符合要求?戶外活動時間的眾數(shù)和中位數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于三角函數(shù)有如下的公式:
sin(α+β)=sinαcosβ+cosαsinβ①;cos(α+β)=cosαcosβ﹣sinαsinβ②;tan(α+β)=③
利用這些公式可將某些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值,
如:tan105°=tan(45°+60°)====﹣(2+).
根據(jù)上面的知識,你可以選擇適當(dāng)?shù)墓浇鉀Q下面的實際問題:
如圖,直升飛機在一建筑物CD上方A點處測得建筑物頂端D點的俯角α=60°,底端C點的俯角β=75°,此時直升飛機與建筑物CD的水平距離BC為42m,求建筑物CD的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,甲、乙、丙、丁四個長方形拼成正方形EFGH,中間陰影為正方形.已知甲、乙、丙、丁四個長方形面積的和是32cm2 , 四邊形ABCD的面積是20cm2 , 則甲、乙、丙、丁四個長方形周長的總和為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B、C、D在一條直線上,AB=CD,四邊形BECF是平行四邊形.
(1)求證:△AEC≌△DFB;
(2)求證:∠AEB=∠DFC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com