【題目】材料閱讀:

類比是數(shù)學中常用的數(shù)學思想.比如,我們可以類比多位數(shù)的加、減、乘、除的豎式運算方法,得到多項式與多項式的加、減、乘、除的運算方法.

理解應用:

1)請仿照上面的豎式方法計算:;

2)已知兩個多項式的和為,其中一個多項式為.請用豎式的方法求出另一個多項式.

3)已知一個長為,寬為的矩形,將它的長增加8.寬增加得到一個新矩形,且矩形的周長是周長的3倍(如圖).同時,矩形的面積和另一個一邊長為的矩形的面積相等,求的值和矩形的另一邊長.

【答案】1;(2)另一個多項式為;(3,矩形的另一邊為,,矩形的另一邊為

【解析】

1)根據(jù)多項式與多項式的乘法豎式的運算方法計算即可求解;
2)根據(jù)多項式與多項式的減法豎式的運算方法計算即可求解;
3)根據(jù)已知條件,求出面積,然后分解多項式即可.

1

2

另一個多項式為:

3矩形的周長是周長的3

所以矩形的面積為:

矩形的面積與的面積相等,

故①當,矩形的另一邊為

②當,矩形的另一邊為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在近期抗疫期間,某藥店銷售AB兩種型號的口罩,已知銷售800A型和450B型的利潤為210元,銷售400A型和600B型的利潤為180元.

(1)求每只A型口罩和B型口罩的銷售利潤;

(2)該藥店計劃一次購進兩種型號的口罩共2000只,其中B型口罩的進貨量不超過A型口罩的3倍,設購進A型口罩x只,這2000只口罩的銷售總利潤為y元.

①求y關(guān)于x的函數(shù)關(guān)系式;

②該藥店購進A型、B型口罩各多少只,才能使銷售總利潤最大?

3)在銷售時,該藥店開始時將B型口罩提價100%,當收回成本后,為了讓利給消費者,決定把B型口罩的售價調(diào)整為進價的15%,求B型口罩降價的幅度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長為1的小正方形組成的網(wǎng)格中.點 A,BC,D 都在這些小正方形的格點上,ABCD 相交于點E,則sin∠AEC的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個口袋中裝有7個只有顏色不同的球,其中3個白球,4個黑球.

1)求從中隨機抽取出一個黑球的概率是多少?

2)若往口袋中再放入x個白球和y個黑球,從口袋中隨機取出一個白球的概率是,求yx之間的函數(shù)關(guān)系式;

3)若在(2)的條件下,放入白球x的范圍是0x4x為整數(shù)),求y的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了踐行金山銀山,不如綠水青山的環(huán)保理念,重外環(huán)保小組的孩子們參與社區(qū)公益活動——收集廢舊電池,活動開展一個月后,經(jīng)過統(tǒng)計發(fā)現(xiàn),全組成員平均每人收集了顆廢舊電池,其中,收集數(shù)量低于顆的同學平均每人收集了顆,收集數(shù)量不低于顆的同學平均每人收集了顆,數(shù)學王老師發(fā)現(xiàn),若每人再多收集顆,則收集數(shù)量低于顆的同學平均每人收集了顆,收集數(shù)量不低于顆的同學平均每人收集了顆,并且,該環(huán)保小組的人數(shù)介于.則該環(huán)保小組有__________人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,DBABB,點C是弧AB上的任一點,過點C作⊙O的切線交BD于點E.連接OE交⊙OF

(1)求證:CEED

(2)填空:

①當∠D   時,四邊形OCEB是正方形;

②當∠D   時,四邊形OACF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,以的各邊作三個正方形,過點于點,連接,延長于點,若中點,且,則的長為( )

A.8B.C.D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在菱形ABCD中,AB=5tanABC=,點E從點D出發(fā),以每秒1個單位長度的速度沿著射線DA的方向勻速運動,設運動時間為t(),將線段CE繞點C順時針旋轉(zhuǎn)一個角α(α=BCD),得到對應線段CF

(1)求證:BE=DF;

(2)t=___秒時,DF的長度有最小值,最小值等于___;

(3)如圖2,連接BDEF、BDECEF于點P、Q,當t為何值時,△EPQ是直角三角形?

(4)在點E的運動過程中,是否存在到直線AD的距離為1的點F,若存在直接寫出 t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與直線分別相交于,兩點,且此拋物線與軸的一個交點為,連接,.已知,

1)求拋物線的解析式;

2)在拋物線對稱軸上找一點,使的值最大,并求出這個最大值;

3)點軸右側(cè)拋物線上一動點,連接,過點軸于點,問:是否存在點使得以,為頂點的三角形與相似?若存在,請求出所有符合條件的點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案