在正方形ABCD中,將∠ADC繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定角度,使角的一邊與BC的交點(diǎn)為點(diǎn)F,且,另一邊與BA的延長線交于點(diǎn)E,連結(jié)EF,與BD交于點(diǎn)M!螧EF的角平分線交BD于點(diǎn)G,過點(diǎn)G作GH⊥AB于H。在下列結(jié)論中:(1);(2)DG=DF;(3)∠BME=90°;(4)HG+EF=AD正確的個(gè)數(shù)有(   )  

A.4     B.3     C.2     D.10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖所示,在正方形ABCD中,E為AD的中點(diǎn),F(xiàn)為DC上的一點(diǎn),且DF=
14
DC.求證:△BEF是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在正方形ABCD中,點(diǎn)G是BC上任意一點(diǎn),連接AG,過B,D兩點(diǎn)分別作BE⊥AG,DF⊥AG,垂足分別為E,F(xiàn)兩點(diǎn),求證:△ADF≌△BAE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黑河)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
(1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點(diǎn)M、N分別在AD、CD上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請寫出猜想,并給予證明.
(2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長線上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關(guān)系?請直接寫出猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、在正方形ABCD中,P為對角線BD上一點(diǎn),PE⊥BC,垂足為E,PF⊥CD,垂足為F,求證:EF=AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在正方形ABCD中,P是CD上一點(diǎn),且AP=BC+CP,Q為CD中點(diǎn),求證:∠BAP=2∠QAD.

查看答案和解析>>

同步練習(xí)冊答案